Ttl выход генератора что это

Термины: Вход/выход TTL-совместимый

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

TTL (transistor–transistor logic) транзисторно-транзисторная логика (ТТЛ) это устоявшийся с 60-х годов XX-го века стандарт логических элементов, постороенных на транзисторной биполярной технологии с напряжением питания +5 В. Типичный базовый элемент этой технологии это логический элемент 2И-НЕ типа 7400 (например, SN7400 от Texas Instruments или отечественный аналог К155ЛА3). Принципиальная схема этого элемента показана на рисунке. В последующие годы технология логических элементов совершенствовалась, оставаясь совместимой c прежней. На смену биполярной технологии пришли МОП (CMOS) и другие комбинированные кремниевые технологии. С целью повышения быстродействия выпускались (и выпускаются до сих пор) семейства CMOS, LVTTL логических элементов с уменьшенным напряжение питания: 3,3 В, 2,5 В, и т.д., при этом разработчики элементов всеми возможными техническими способами старались сохранить совместимость по логическим уровням напряжений с классическим базовым TTL-элементом 7400 с напряжением питания +5 В, поскольку за прошедшие 50 лет (!) было порождено немыслимое количество приборов и устройств с TTL входами и выходами.

Перечислим основные характеристики входов и выходов TTL:

Представленные выше характеристики относятся к перым TTL-элементам, которые содержат целый ряд несовершенств, преодолённых впоследствии. В частности, большинство современных CMOS, LVTTL элементов уже имеют симметричные выходные токи логичекого нуля и логической единицы, значительно меньшие входные токи (большее входное сопротивление), некоторые имеют свойство сохранения высокого входного сопротивления при выключенном питании, а также совместимость с входными 5-вольтовым уровнями при собственнном напряжении питания 3,3 В и ниже.

В любом случае, если в документации указан «TTL-совместимый вход или выход», для пользователя это означает, что данный вход (выход) принадлежит большому семейству совместимых TTL-устройств, но с особенностями данного входа и выхода в любом случае нужно ознакомиться в руководстве на данное устройство.

Кроме того, выход любого устройства, который подключается к TTL-совместимому входу, должен обеспечить также разумное время перепада напряжения (для оценки: не более, чем время задержки стандартного TTL-элемента, составляющее порядка 10 нс). На обычный TTL-вход (кроме специального, имеющего гистерезис) не рекомендуется подавать сигнал с длительностями перепадов более 10 нс, поскольку это может вызвать сбой (дребезг, неоднозначное состояние) входного TTL-логического элемента.

Также важно отметить, что стандарт TTL предназначен для организации локальных коротких связей (рекомендуется длиной менее 0,5 м) в устройствах, имеющих цепь общего провода или общее сигнальное заземление.

Для повышения помехоустойчивости TTL-линий применяют электрическое согласование линий для уменьшения волновых эффектов отражения от несогласованных концов линий.

Если TTL-интерфейс применяется для передачи сигналов синхронизации измерительной системы, то, кроме требований согласованности линий, цепи общих проводов передатчика и приёмника должны быть эквипотенциальны в широкой полосе частот (сотни МГц). Это достижимо при очень хорошей высокочастотной связности цепей общих проводов передатчика и приёмника (либо это должны быть связи значительно короче 0,5 м, либо роль цепи общего провода должна выполнять электропроводная пластина или единое электропроводное шасси блока). Такие усиленные технические меры необходимы для обеспечения низкого уровня вносимых фазовых шумов при передаче сигналов синхронизации.

Примеры использования терминов

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Модуль ввода-вывода дискретных сигналов
32 входа/выхода

LTR43

АЦП: 16 бит; 16/32 каналов;
±0,2 В…10 В; 2 МГц
ЦАП: 16 бит; 2 канала; ±5 В; 1 МГц
Цифровые входы/выходы:
17/16, ТТЛ 5 В
Интерфейс: USB 2.0 (high-speed), Ethernet (100 Мбит)
Гальваническая развязка.

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Модуль АЦП/ЦАП
16/32 каналов, 16 бит, 2 МГц, USB, Ethernet

E-502

АЦП: 16 бит; 16/32 каналов;
±0,2 В…10 В; 2 МГц
ЦАП: 16 бит; 2 канала; ±5 В; 1 МГц
Цифровые входы/выходы:
18/16 TTL 5 В
Интерфейс: PCI Express

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Плата АЦП/ЦАП
16/32 каналов, 16 бит, 2 МГц, PCI Express

L-502

АЦП: 14 бит; 16/32 каналов;
±0,15 В…10 В; 200 кГц
ЦАП: 16 бит; 2 канала; ±5 В; 200 кГц
Цифровые входы/выходы:
16/16 TTL 5 В
Интерфейс: USB 2.0

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Модуль АЦП/ЦАП
16/32 каналов, 14 бит, 200 кГц, USB

E14-140M

АЦП: 14 бит; 16/32 каналов;
±0,156 В…10 В; 400 кГц
ЦАП: 12 бит; 2 канала; ±5 В; 8 мкс
Цифровые входы/выходы:
16/16 TTL 5 В
Интерфейс: USB 2.0

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Модуль АЦП/ЦАП
16/32 каналов, 14 бит, 400 кГц, USB

Источник

Заглядываем внутрь советской интегральной схемы с ТТЛ

Перевод статьи из блога Кена Ширриффа

В данной статье мы изучим чип 1980-х годов, использовавшийся в часах для космического корабля «Союз». На фото через микроскоп видно кремниевый кристалл внутри корпуса с чёткой геометрической планировкой. Кремний на фотографии выглядит розовато-фиолетовым, а слой с металлическими проводниками – белым. По краям чипа соединительные проводники (чёрные) соединяют площадки чипа с его контактами. Крохотные структуры – это резисторы и транзисторы.

Чип используется в часах на фото ниже. Недавно эти часы, летавшие в космос на корабле «Союз» (неизвестно, на каком из рейсов – судя по маркировке, часы изготовлены в 1984 году), попали в наш музей. Левый верхний дисплей показывает время, а нижний – таймер. Функция «будильника» в заданное время активирует внешний контур. Сначала я думал, что у этих часов внутри окажется единственный чип, однако они оказались неожиданно сложными, содержащими более 100 ИС на десяти платах.

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Печатные платы часов открываются на манер книги, после чего становится видно ИС и другие компоненты – это позволяют сделать гибкие крепежи для проводов, соединяющих платы. Среди ИС больше всего встречаются 14-контактные плоские чипы в металлическом корпусе с поверхностным монтажом. Мне захотелось узнать побольше об этих ИС, так что я вскрыл один из них, сфотографировал и провёл обратный инжиниринг его схемы (не волнуйтесь, мы не стали уничтожать чипы из часов – мы просто купили на eBay аналогичные; их было неожиданно просто найти).

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это
Жгуты проводов расположены так, чтобы платы могли раскрываться. Кварцевый кристалл, служащий таймером, виден вверху в центре. Питание расположено на платах справа, с несколькими круглыми индукторами.

Советские интегральные схемы

Часы собраны на ИС с ТТЛ – эта цифровая логика была популярной с 1970-х по 1990-е, поскольку была надёжной, недорогой и простой в использовании (если вы занимались любительской электроникой в то время, вам наверняка знакомы модели серии 7400). В простейшем ТТЛ-чипе содержалось лишь несколько логических вентилей – к примеру, 4 И-НЕ вентиля или 6 инвертеров, а более сложные чипы могли реализовывать такие функциональные модули, как 4-битный счётчик. В итоге ТТЛ уступили место чипам КМОП, использующимся в современных компьютерах, которые потребляют меньше энергии и имеют большую плотность.

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это
ИС со снятой металлической крышкой

Маркировка чипа — 134ЛА8 0684 (134 – чип с низким энергопотреблением, Л – логический, А – вентиль И-НЕ, 8 – подтип данной категории, 0684 – изготовлен в 6-м месяце 1984 года). Он реализует четыре вентиля И-НЕ с открытым коллектором. Вентиль И-НЕ – стандартный логический вентиль, выдающий 0 если оба входа равны 1, а в противном случае – 1. Выход открытого коллектора немного отличается от стандартного.
В случае 0 напряжение на выходном контакте будет низким, а в случае 1 – плавающим («высокоимпедансное состояние»). Требуется внешний подтягивающий резистор, чтобы подтянуть выход в случае результата 1. В часах используется три таких чипа: один в схеме с кварцевым осциллятором, и два в роли инверторов в других частях часов.

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это
Логическая схема 134ЛА8

По мнению ЦРУ, СССР отставал от США в вопросе разработки ИС примерно на 9 лет. И отставание было бы гораздо большим, если бы СССР не скопировал множество западных ИС. В итоге у большей части советских ТТЛ-чипов имеются западные эквиваленты. Однако исследованный мною чип 134ЛА8 отличается от западных двумя особенностями. Во-первых, для уменьшения количества внешних резисторов на чипе расположено два подтягивающих резистора, которые можно подключить как угодно. Во-вторых, у чипа два общих входных вывода, что освобождает два контакта, используемые резисторами. Так что, хотя СССР и копировал ИС, он также творчески разрабатывал собственные чипы.

Компоненты ИС

Под микроскопом видны компоненты ИС, транзисторы и резисторы. Участки кремниевого кристалла, в зависимости от примесей, имеют оттенки розового, фиолетового или зелёного. Примешивая к кремнию другие материалы, можно менять его полупроводниковые свойства, получая кремний n-типа и p-типа. Расположенные сверху белые линии – это металлические дорожки, соединяющие компоненты кремниевого слоя.

На фото ниже видно резистор на кремниевой подложке. Резистор формируется добавлением примесей к кремнию, порождающих дорожку с высоким сопротивлением – это красноватая линия на фото. Чем длиннее дорожка, тем больше сопротивление, поэтому резисторы часто выполняются в виде зигзагов, чтобы получить требуемое сопротивление. Резистор подсоединяется к металлическому слою с обоих сторон, а другая дорожка проходит над ним.

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это
Резистор на кристалле ИС

Этот чип, как и другие ТТЛ-чипы, использует биполярные n-p-n-транзисторы. У этих транзисторов эмиттер n-типа, база p-типа и коллектор n-типа. В ИС транзисторы изготовляются путём добавления в кремний примесей, формирующих слои с различными свойствами. Внизу стопки коллектор, при помощи добавок превращённый в кремний n-типа, формирует большую часть транзистора (большая зелёная область). Над ним находится тонкий участок кремния p-типа, формирующий базу; это красноватый участок в середине. Наконец, небольшой прямоугольник эмиттера n-типа формируется над базой. Эти слои формируют структуру n-p-n. Заметьте, что металлическое соединение коллектора и базы находится сбоку от основной части транзистора.

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

ТТЛ-схемы обычно использовали транзисторы с несколькими эмиттерами, по одному на вывод, что можно видеть выше. Такой транзистор может показаться странным, однако его довольно просто сделать в ИС. У транзистора выше подключено два эмиттера. Если присмотреться, видно, что эмиттеров четыре, и неиспользуемые закорочены на базу.

Выводные транзисторы на чипе выдают внешний сигнал с чипа, поэтому они должны поддерживать гораздо большие токи по сравнению с другими. В итоге они и сами крупнее других транзисторов. Как и ранее, у транзистора есть большая область коллектора n-типа (зелёная) с базой выше (розовая) и с эмиттером на самом верху. У выходного транзистора есть длинные контакты, соединяющие металлический слой и кремний, вместо небольших квадратных контактов, как у предыдущего. Эмиттер (с проводником в виде U) тоже крупнее. Это позволяет пропускать через него больше тока. На фото ниже у транзистора слева нет металлического слоя, поэтому его подробности легче рассмотреть. У транзистора справа видны металлические проводники.

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Как работает ТТЛ И-НЕ вентиль

На диаграмме ниже показан один из логических вентилей И-НЕ с открытым коллектором. Чтобы понять, как работает схема (самое подробное описание работы можно найти по ссылке), сначала предположим, что на вход ей приходит 0. Ток, идущий через резистор R1 и базу транзистора Q1 выйдет через эмиттер транзистора. Транзистор Q2 будет выключен, поэтому R3 притягивает базу Q3 вниз и выключает его. Таким образом выход будет плавающим (то есть, выход открытого коллектора 1). Теперь представим, что на оба входа подаётся 1. Теперь ток, идущий через R1, не может пройти через вход, поэтому он выйдет через коллектор Q1 (в обратном направлении) и в базу Q2, что отключит Q2. Q2 притянет базу Q3 вверх, включая Q3 и вытягивая низкое напряжение выхода. Таким образом схема реализует вентиль И-НЕ, выдавая 0, если на оба входа идёт высокое напряжение. Заметьте, что Q1 работает не как нормальный транзистор – вместо этого он «управляет током», направляя ток от R1 в ту или иную сторону.

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

На диаграмме ниже показаны компоненты одного из вентилей И-НЕ, размеченные в соответствии со схемой выше (три остальных вентиля И-НЕ на чипе похожи на этот). Разводка вентиля проста по сравнению с большинством ИС; металлические дорожки (белые) можно сопоставить с проводниками на схеме. Обратите внимание на извилистую дорожку от земли к Q3. У транзистора Q1 два эмиттера, а Q3 – большой выходной транзистор. Два неиспользуемых транзистора находятся ниже Q2.

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Заключение

Советский чип 1984 года достаточно прост, чтобы разобраться в работе схемы, иллюстрирующей конструкцию ТТЛ вентиля И-НЕ. Минус простых чипов в том, что часам с «Союза» потребовалось более 100 чипов для реализации простейшей функциональности часов. Даже в то время уже существовали чипы, целиком реализующие работу наручных часов и будильников. Сегодня на чипах могут содержаться миллиарды транзисторов, из-за чего они обладают огромным набором функций, однако их работу невозможно понять, просто разглядывая.

Видео, на котором CuriousMarc разбирает космические часы:

Источник

Генераторы на миросхемах ТТЛ

При конструировании устройств на цифровых микросхемах нередко возникает задача построения генератора прямоугольных импульсов с теми или иными характеристиками. Данная статья призвана помочь конструктору-любителю подобрать схему задающего генератора той или иной степени сложности и необходимых характеристик.

Схема, представленная на рисунке 1 собрана на трех элементах микросхемы 155 ЛА3 и работает в режиме автогенератора благодаря задержке распространения сигнала через элементы. Для простой логики серии 155 время задержки одного элемента равно 20 нс, следовательно частота генератора, собранного на трех элементах будет примерно равна 8 МГц.

Для уменьшения частоты генерации число элементов нужно увеличить, учитывая, что количество их должно быть нечетным. Вход Упр. служит для управления работой генератора (высокий уровень разрешает работу схемы, низкий запрещает). Если управление генерацией не требуется, то управляющий вывод нужно подключить к плюсу источника питания через резистор 1 Ком или соединить его со вторым входом этого же элемента (по схеме нижний вход D1.1).

Классическая схема простейшего генератора с времязадающей цепью изображена на рис.2. Собрать его можно практически на любых элементах с инверсией (НЕ, И-НЕ, ИЛИ-НЕ), частота следования выходных импульсов зависит от емкости конденсатора С1 и сопротивления R1. Стоит учитывать, что при увеличении сопротивления R1 более 470 Ом, генерация будет неустойчивой. При номиналах R1= 300 Ом и С1=0.047 мкФ частота генерации будет составлять примерно 10 кГц.

Схема, изображенная на рис.3 содержит еще два элемента, один из которых (D1.3) служит для более устойчивой работы генератора, а другой (D1.4) используется в качестве буферного для улучшения формы выходного сигнала. При указанных на схеме номиналах R1 и емкости конденсатора 0.047 мкФ частота следования импульсов будет равна 10 КГц.

Частоту генерации мультивибратора на ТТЛ микросхемах несложно изменять не только номиналами сопротивления и емкости, но и изменением напряжения. На схеме, представленной на рис.4 управляющее напряжение подается на вход Упр. и может изменяться от нуля до напряжения питания микросхемы. При увеличении напряжения на входах у элементов быстрее наступает порог срабатывания в процессе перезаряда конденсаторов, а значит и увеличивается частота генерации.

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Во всем диапазоне изменения напряжения зависимость «управляющее напряжение/частота» практически линейная. При емкости частотозадающих конденсаторов С1 и С2 равной 0.1 мкФ, частоту мультивибратора можно регулировать в диапазоне 1-8 кГц, а при 1000 пФ – 120 – 750 кГц. Скважность сигнала несложно изменять разницей в номиналах конденсаторов. Сигалы на выходах 1и 2 будут в противофазе, здя улучшения формы сигнала имеет смысл добавить на выходы еще по одному инвертору ( к примеру, неиспользуемые элементы D1.3 и D1.4).

Схема генератора, частоту и скважность которого можно оперативно менять с помощью переменных резисторов, изображена на рис. 5. При указанных на схеме номиналах резисторов и емкости конденсатора С1=0.1 мкФ скважность можно изменять от 1.5 до 3 (резистором R2), а частоту от 8 до 25 кГц (R1). Для другого диапазона частот придется изменить емкость конденсатора С1.

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Особенность управляемого генератора импульсов, изображенного на рис.6 состоит в том, что длительность последнего генерируемого импульса не зависит от времени окончания управляющего сигнала. Когда бы сигнал Упр. не исчез, генератор в любом случае отработает период до конца. Достигнуто это тем, что один из входов управляющего элемента D1.1 подключен к выходу мультивибратора, собранного на элементах D1.2 – D1.4.

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Запускается мультивибратор низким уровнем на входе Упр. и если в процессе работы генератора этот сигнал пропадет (станет высоким), то благодаря обратной связи (выход D1.4 – вход D1.1) мультивибратор остановится только тогда, когда отработает период полной длительности и уровень на его выходе не станет низким. В дополнение частоту генератора можно плавно изменять переменным резистором R2 (при указаных на схеме номиналах от от 4 до 25 кГц).

Обычно при построении генераторов на ТТЛ микросхемах используются резисторы небольшого номинала и потому емкости времязадающих конденсаторов получаются относительно большими, а диапазон регулировки частоты невелик. Увеличить диапазон регулировки до 200 раз можно, включив во времязадающую цепь транзистор с достаточно большим входным сопротивлением, как изображено на рис.7. При изменении емкости времязадающего конденсатора от 10 мкФ до 20 пФ, среднюю частоту генератора можно изменять от долей герца до нескольких МГц.

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Еще одна схема, но уже с полевым транзистором, позволяет с помощью резистора R1 изменять частоту генератора в 50 000 раз (рис.8). Кроме того, высокое входное сопротивление затвора полевого транзистора позволяет получать низкую частоту генерацию при относительно небольшой емкости времязадающего конденсатора. К примеру, при указанных на схеме номиналах и максимальном значении R1 частота генерации составит примерно 0.5 Гц. Вполне очевидно, что для плавного изменения частоты в таком большом диапазоне, желательно, чтобы резистор R1 был многооборотным.

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Все вышеописанные мультивибраторы не отличаются высокой стабильностью частоты, которая зависит от напряжения питания, температуры окружающей среды и еще целого ряда факторов, поэтому в случаях, когда к стабильности генерируемой частоты предъявляются высокие требования, в схему вводятся кварцевые резонаторы, работающие на необходимой частоте (рис.9). Строя подобные генераторы, следует иметь в виду, что приближение генерируемой частоты к граничной частоте переключения элементов, ухудшает форму сигнала, приближая ее форму к синусоидальной.

Источник

Генераторы импульсов на элементах ТТЛ, КМОП и ЭСЛ

В принципе, электрических колебаний представляет собой один или несколько усилительных каскадов, охваченных обратной связью с частотно-зависимыми сопротивлениями, которые и обеспечивают генерацию на требуемой частоте. В качестве частотіно-задающих элементов генераторов используют RC, LC, RLC-цепи, а также пьезокерамические и кварцевые резонаторы.

Схема генератора с RC частотно-задающей цепью и временные диаграммы, поясняющие его работу, приведены на рис. 24. Принцип его работы основан на процессе зарядки-разрядки конденсатора С через резистор R. Через этот резистор осуществляется ООС по постоянному току, а через конденсатор—ПОС по переменному. Предположим, что в начальный момент конденсатор разряжен, на выходе элемента DD1.2 действует напряжение низкого уровня — начнется заряд конденсатора (рис. 24, участок а). По мере его зарядки напряжение на нем увеличивается, а на выходе элемента DDL1—уменьшается (рис. 24, участок б). Когда напряжение на выходе элемента DD1.1 станет соответствовать низкому уровіню, выходное напряжение элемента DD1.2 начнет увеличиваться. Этот прирост напряжения через конденсатор поступает на вход элемента DD1.1, что приводит к резкому уменьшению его выходного напряжения, значит, к резкому увеличению выходного напряжения элемента DD1.2, что, в свою очередь, приводит к резкому уменьшению напряжения на выходе элемента DD1.1 и т. д. Таким образом, устройство скачком переключается в другое состояние — с напряжением высокого уровня на выходе элемента DD1.2 (рис. 24, участок в),

С этого момента начнется перезаряд конденсатора, в результате «его напряжение на входе элемента DDil.l уменьшается; а на его выходе — увеличивается (рис. 24, участок г). Когда напряжение на выходе элемента DD1.1 достигает напряжения высокого уровня, устройство скачком переключается в исходное состояние и процесс повторяется.

В таком генераторе можно использовать элементы ТТЛ, КМОП и ЭСЛ, но, в зависимости от конкретных элементов, на нее накладываются определенные ограничения. Для элементов КМОП сопротивление резистора может быть от единиц килоом до десятков мегаом, а емкость конденсатора — от десятков пикофарад до сотен микрофарад, а вот для элементов ТТЛ сопротивление резистора ограничено более узкими рамками, о чем уже говорилось ранее.

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Рис. 24. Генератор с RC частотно-задающей цепью (а) и графики (б), поясняющие его работу

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Учитывая, что элементы КМОП имеют ограничения по частотному диапазону, рекомендовать их можно для генераторов на частоты до 2. 4 МГц. Для более высокочастотных генераторов следует применять элементы ТТЛ или ЭСЛ. Перестройку частоты генераторов можно осуществлять с помощью переменных резистора или конденсатора. Температурная стабильность таких генераторов невысока и для ее повышения используют конденсаторы с определенным ТКЕ.

Устройство, собранное по схеме рис. 24, генерирует прямоугольные импульсы со скважностью примерно равной 2 (скважность — отношение периода следования импульсов к их длительности). Если же скважность импульсов необходимо изменять, сохраняя при этом частоту их следования, надо синхронно изменять цепи зарядки и разрядки конденсатора. Как это реализовать, показано на рис. 26. Здесь для регулировки скважности импульсов используют потенциометр R1. В среднем положении его движка, когда время зарядки и разрядки конденсатора СІ примерно одинаково, скважность близка к 2. При перемещении движка в ту или иную сторону время зарядки будет, например, уменьшаться, а разрядки — увеличиваться, это приведет к изменению скважности, при этом частота следования будет изменяться незначительно. В таком генераторе можно регулировать скважность примерно от 1,01 до 100.

Простой генератор на элементах КМОП и LC-контуре можно собрать по схеме рис. 27. В нем через резистор R1 и катушку индуктивности L1 осуществляется ООС ло постоянному току, благодаря чему при изменении питающего напряжения обеспечивается устойчивая работа генератора в широких пределах. Так как входное сопротивление элемента составляет сотни килоом — единицы мегаом, он слабо шунтирует контур C1L1C2, поэтому добротность контура будет достаточно большой, что обеспечивает хорошую форму сигнала. Чтобы нагрузка не оказывала существенного влияния на частоту генератора, связь с ней осуществляется через конденсатор СЗ небольшой емкости.

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Рис. 25. Принципиальная схема генератора с регулируемой скважностью импульсов

Общий недостаток описанных выше генераторов—сравнительно невысокая стабильность генерируемой частоты (10-3. 10-4 1/град). Для повышения стабильности применяют пьезокерамические и кварцевые резонаторы, включая их, например, вместо конденсатора в цепи ПОС (см. рис. 24), чем обеспечивают мягкий режим самовозбуждения. Однако при таком способе включения резонаторов возможно возникновение генерации на частотах, отличных от собственной частоты резонатора. Чтобы этого не произошло, используют различные способы фазовой или амплитудной селекции нужной частоты.

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Рис. 26. Принципиальные схемы LC-генераторов на элементах ТТЛ

Для повышения добротности контура емкость конденсатора С2 следует выбирать в 2—4 раза больше емкости конденсатора С1. Частоту генерации можно определить по формуле:

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Рис. 27. Принципиальная схема генератора на LC-контуре и элементе КМОП

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Рис. 28. Генератор на элементах ТТЛ с кварцевой стабилизацией частоты

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Ttl выход генератора что это. Смотреть фото Ttl выход генератора что это. Смотреть картинку Ttl выход генератора что это. Картинка про Ttl выход генератора что это. Фото Ttl выход генератора что это

Рис. 29. Генератор на элементах КМОП с кварцевой стабилизацией частоты

Литература: И. А. Нечаев, Массовая Радио Библиотека (МРБ), Выпуск 1172, 1992 год.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *