Uuid что это в ноутбуке
Uuid что это в ноутбуке
Принесли мне старичка Lenovo Thinkpad T400 подготовить перед продажей. К слову, мне всегда нравились старые ThinkPadы, от них веет каким-то величием и надежностью. Может это выветривающийся дух IBM, а может самовнушение, ну да черт с ним. После осмотра и чистки ноута я заметил отсутствие UUID (Universally Unique Identifier) – универсального идентификатора, используется для привязки софта и т.д.. Данная проблема довольно старая, темы на форумах начинаются где-то с 2006, но она актуальна и на новых девайсах.
На фото ниже можно увидеть что значение UUID забито нулями.
Возможные варианты слета или отсутствия серийных номеров и других идентификаторов:
*Замена материнской платы. Платы обычно идут с доноров ( со своими идентификаторами) или чистые, в последнем варианте информация меняется на данные прошлой материнки.
*Перезапись/ Замена Bios. Может происходить при обновлении биоса, замены прошивки с донора в которой данная область затерта и схожих действиях.
* Рандомные глюки софта/железа.
По идее, без серийников можно жить и параноики этому будут даже рады (хотя на леново можно и поинтересней чего зашить, тот же Libreboot, но об этом как-то в другой статье), но все зависит от железа. В некоторых случаях ничего не происходит, в других же возможны проблемы с привязкой софта, рандомными перезагрузками и т.д.
У этого экземпляра слет случился после обновления биоса с довольно старой версии.
Способ восстановления подходит при отсутствии UUID, серийника материнской платы и ноута или при их значении invalid.
Вы делаете все на свой страх и риск, я вас предупредил.
После загрузится красивое лого Thinkpad с варнингом о том, что воровать плохо и появится основное меню:
Нам интересны первый и четвертый пункт.Остальные не очень интересны, но это:
2)Проверка звука
3) Форматирование диска
5)Удаление рекавери раздела
6)Записи при обслуживании.
Выбрав первый вариант Set system identification, мы можем:
1)Добавить серийные номера ноутбука, материнки.
2)Отобразить существующие.Что и сделано на фото.
3)Удалить записанные в памяти.
После перезагрузки и захода в биос все отображается так как должно.
Немного любви с чисткой и ноут прослужит новому владельцу еще пяток лет. Это ведь ThinkPad.
Как генерируются UUID
Вы наверняка уже использовали в своих проектах UUID и полагали, что они уникальны. Давайте рассмотрим основные аспекты реализации и разберёмся, почему UUID практически уникальны, поскольку существует мизерная возможность возникновения одинаковых значений.
Современную реализацию UUID можно проследить до RFC 4122, в котором описано пять разных подходов к генерированию этих идентификаторов. Мы рассмотрим каждый из них и пройдёмся по реализации версии 1 и версии 4.
Теория
UUID (universally unique IDentifier) — это 128-битное число, которое в разработке ПО используется в качестве уникального идентификатора элементов. Его классическое текстовое представление является серией из 32 шестнадцатеричных символов, разделённых дефисами на пять групп по схеме 8-4-4-4-12.
Информация о реализации UUID встроена в эту, казалось бы, случайную последовательность символов:
Значения на позициях M и N определяют соответственно версию и вариант UUID.
Версия
Номер версии определяется четырьмя старшими битами на позиции М. На сегодняшний день существуют такие версии:
Вариант
Это поле определяет шаблон информации, встроенной в UUID. Интерпретация всех остальных битов в UUID зависит от значения варианта.
Мы определяем его по первым 1-3 старшим битам на позиции N.
1 0 0 0 = 8
1 0 0 1 = 9
1 0 1 0 = A
1 0 1 1 = B
Так что если вы видите UUID с такими значениями на позиции N, то это идентификатор в варианте 1.
Версия 1 (время + уникальный или случайный идентификатор хоста)
В этом случае UUID генерируется так: к текущему времени добавляется какое-то идентифицирующее свойство устройства, которое генерирует UUID, чаще всего это MAC-адрес (также известный как ID узла).
Идентификатор получают с помощью конкатенации 48-битного МАС-адреса, 60-битной временной метки, 14-битной «уникализированной» тактовой последовательности, а также 6 битов, зарезервированных под версию и вариант UUID.
Тактовая последовательность — это просто значение, инкрементируемое при каждом изменении часов.
Временная метка, которая используется в этой версии, представляет собой количество 100-наносекундных интервалов с 15 октября 1582 года — даты возникновения григорианского календаря.
Возможно, вы знакомы с принятым в Unix-системах исчислением времени с начала эпохи. Это просто другая разновидность Нулевого дня. В сети есть сервисы, которые помогут вам преобразовать одно временное представление в другое, так что не будем на этом останавливаться.
Хотя эта реализация выглядит достаточно простой и надёжной, однако использование MAC-адреса машины, на которой генерируется идентификатор, не позволяет считать этот метод универсальным. Особенно, когда главным критерием является безопасность. Поэтому в некоторых реализациях вместо идентификатора узла используется 6 случайных байтов, взятых из криптографически защищённого генератора случайных чисел.
Сборка UUID версии 1 происходит так:
Поскольку эта реализация зависит от часов, нам нужно обрабатывать пограничные ситуации. Во-первых, для минимизации коррелирования между системами по умолчанию тактовая последовательность берётся как случайное число — так делается лишь один раз за весь жизненный цикл системы. Это даёт нам дополнительное преимущество: поддержку идентификаторов узлов, которые можно переносить между системами, поскольку начальное значение тактовой последовательности совершенно не зависит от идентификатора узла.
Помните, что главная цель использования тактовой последовательности — внести долю случайности в наше уравнение. Биты тактовой последовательности помогают расширить временную метку и учитывать ситуации, когда несколько UUID генерируются ещё до того, как изменяются процессорные часы. Так мы избегаем создания одинаковых идентификаторов, когда часы переводятся назад (устройство выключено) или меняется идентификатор узла. Если часы переведены назад, или могли быть переведены назад (например, пока система была отключена), и UUID-генератор не может убедиться, что идентификаторы сгенерированы с более поздними временными метками по сравнению с заданным значением часов, тогда нужно изменить тактовую последовательность. Если нам известно её предыдущее значение, его можно просто увеличить; в противном случае его нужно задать случайным образом или с помощью высококачественного ГПСЧ.
Версия 2 (безопасность распределённой вычислительной среды)
Главное отличие этой версии от предыдущей в том, что вместо «случайности» в виде младших битов тактовой последовательности здесь используется идентификатор, характерный для системы. Часто это просто идентификатор текущего пользователя. Версия 2 используется реже, она очень мало отличается от версии 1, так что идём дальше.
Версия 3 (имя + MD5-хэш)
Если нужны уникальные идентификаторы для информации, связанной с именами или наименованием, то для этого обычно используют UUID версии 3 или версии 5.
Они кодируют любые «именуемые» сущности (сайты, DNS, простой текст и т.д.) в UUID-значение. Самое важное — для одного и того же namespace или текста будет сгенерирован такой же UUID.
Обратите внимание, что namespace сам по себе является UUID.
В этой реализации UUID namespace преобразуется в строку байтов, конкатенированных с входным именем, затем хэшируется с помощью MD5, и получается 128 битов для UUID. Затем мы переписываем некоторые биты, чтобы точно воспроизвести информацию о версии и варианте, а остальное оставляем нетронутым.
Важно понимать, что ни namespace, ни входное имя не могут быть вычислены на основе UUID. Это необратимая операция. Единственное исключение — брутфорс, когда одно из значений (namespace или текст) уже известно атакующему.
При одних и тех же входных данных генерируемые UUID версий 3 и 5 будут детерминированными.
Версия 4 (ГПСЧ)
Самая простая реализация.
6 битов зарезервированы под версию и вариант, остаётся ещё 122 бита. В этой версии просто генерируется 128 случайных битов, а потом 6 из них заменяется данными о версии и варианте.
Такие UUID полностью зависят от качества ГПСЧ (генератора псевдослучайных чисел). Если его алгоритм слишком прост, или ему не хватает начальных значений, то вероятность повторения идентификаторов возрастает.
В современных языках чаще всего используются UUID версии 4.
Её реализация достаточно простая:
Версия 5 (имя + SHA-1-хэш)
Единственное отличие от версии 3 в том, что мы используем алгоритм хэширования SHA-1 вместо MD5. Эта версия предпочтительнее третьей (SHA-1 > MD5).
Практика
Одним из важных достоинств UUID является то, что их уникальность не зависит от центрального авторизующего органа или от координации между разными системами. Кто угодно может создать UUID с определённой уверенностью в том, что в обозримом будущем это значение больше никем не будет сгенерировано.
Это позволяет комбинировать в одной БД идентификаторы, созданные разными участниками, или перемещать идентификаторы между базами с ничтожной вероятностью коллизии.
UUID можно использовать в качестве первичных ключей в базах данных, в качестве уникальных имён загружаемых файлов, уникальных имён любых веб-источников. Для их генерирования вам не нужен центральный авторизующий орган. Но это обоюдоострое решение. Из-за отсутствия контролёра невозможно отслеживать сгенерированные UUID.
Есть и ещё несколько недостатков, которые нужно устранить. Неотъемлемая случайность повышает защищённость, однако она усложняет отладку. Кроме того, UUID может быть избыточным в некоторых ситуациях. Скажем, не имеет смысла использовать 128 битов для уникальной идентификации данных, общий размер которых меньше 128 битов.
Уникальность
Может показаться, что если у вас будет достаточно времени, то вы сможете повторить какое-то значение. Особенно в случае с версией 4. Но в реальности это не так. Если бы вы генерировали один миллиард UUID в секунду в течение 100 лет, то вероятность повторения одного из значений была бы около 50 %. Это с учётом того, что ГПСЧ обеспечивает достаточное количество энтропии (истинная случайность), иначе вероятность появления дубля будет выше. Более наглядный пример: если бы вы сгенерировали 10 триллионов UUID, то вероятность появления двух одинаковых значений равна 0,00000006 %.
А в случае с версией 1 часы обнулятся только в 3603 году. Так что если вы не планируете поддерживать работу своего сервиса ещё 1583 года, то вы в безопасности.
Впрочем, вероятность появления дубля остаётся, и в некоторых системах стараются это учитывать. Но в подавляющем большинстве случаев UUID можно считать полностью уникальными. Если вам нужно больше доказательств, вот простая визуализация вероятности коллизии на практике.
Системный номер раздела диска UUID / GUID / serial number
На чистом диске нет никаких разделов и соответственно нет никаких номеров раздела.
В чем отличие UUID от GUID
UUID (Universally unique identifier «универсальный уникальный идентификатор») — UUID представляет собой 16-байтный (128-битный) номер. В каноническом представлении UUID изображают в виде числа в шестнадцатеричной системе счисления, разделённого дефисами на пять групп в формате 8-4-4-4-12.
GUID (Globally Unique Identifier) — это так называется у Microsoft — фактически это последняя реализация UUID (да, там были свои предыдущие версии и свой зоопарк).
Именно по этому актуальная разметка диска от Microsoft называется GPT (GUID Partition Table), читаем статью
В целом используется как идентификатор (в составе также закодирована дата и время создания):
Почему такая загадочная запись?
Очень удобно переводить двоичные числа в шестнадцатеричный формат (а в десятичный формат — очень неудобно).
Помним, что для половинки байта (4 бита):
Bin | Hex | Dec |
0000 | 0 | 0 |
0001 | 1 | 1 |
0010 | 2 | 2 |
0011 | 3 | 3 |
0100 | 4 | 4 |
0101 | 5 | 5 |
0110 | 6 | 6 |
0111 | 7 | 7 |
1000 | 8 | 8 |
1001 | 9 | 9 |
1010 | A | 10 |
1011 | B | 11 |
1100 | C | 12 |
1101 | D | 13 |
1110 | E | 14 |
1111 | F | 15 |
Т.е. один байт (8 бит) вида 11111111 легко представляется в виде FF = т.е. каждая половинка байта — это F (15 в десятичной системе).
Поэтому 128 бит легко превращаются в номер из 32 цифр в шестнадцатеричной системе счисления, 128/4 = 32
В номере UUID <8e44ac32-40e2-11ea-93a4-bff4e4da2abb> каждые два разряда фактически кодируют один байт.
Посмотрим на структуру номера
xxxxxxxx-xxxx-Mxxx—Nxxx-xxxxxxxxxxxx
4 бита M обозначают версию («version») UUID, а 1-3 старших бита N обозначают вариант («variant») UUID.
Первые две цифры кодируют дату и время создания.
Такое разделение на группы основано на структуре UUID:
Название поля | Длина (в байтах) | Длина (число 16-ричных цифр) | Содержимое |
---|---|---|---|
time_low | 4 | 8 | целое число, обозначающее младшие 32 бита времени |
time_mid | 2 | 4 | целое число, обозначающее средние 16 бит времени |
time_hi_and_version | 2 | 4 | 4 старших бита обозначают версию UUID, младшие биты обозначают старшие 12 бит времени |
clock_seq_hi_and_res clock_seq_low | 2 | 4 | 1-3 старших бита обозначают вариант UUID, остальные 13-15 бит обозначают clock sequence |
node | 6 | 12 | 48-битный идентификатор узла |
Как вытащить дату и время из GUID?
bdb62d89-cede-11e4-b12b-d4ae52b5e909
дата содержится в первых символах, bdb62d89-cede-11e4 которые нужно переставить задом наперед: 11e4-cede-bdb62d89
первый символ отбрасываем, убираем «лишние» знаки «-«(тире)
интервал в десятых долях микросекунд (HEX) получается равным: интервал 16= 1E4CEDEBDB62D89
переводим его в десятичный интервал интервал 10 = HexToDec(интервал 16);в результате получаем: интервал 10 = 136 461 344 788 852 105
находим интервал в секундах: интервал Сек = интервал 10 / 10 000 000;
Делаем сдвиг даты от 15.10.1582 г. + 13 646 134 478 + сдвиг на часовой пояс (Московское время) от «мирового времени» (GMT) = 20.03.2015 16:54:38
Использование UUID / GUID как номера раздела (тома) на диске
В LInux изначально используется UUID как системный номер раздела.
В Windows свой зоопарк.
Для FAT 32 — серийный номер из 4 байт = 8 символов в шестнадцатеричной системе
Для NTFS — серийный номер из 8 байт = 16 символов в шестнадцатеричной системе
Системный номер раздела записан непосредственно на диске — создается при форматировании диска. В серийном номер также закодирована дата и время создания раздела.
ВАЖНО: каждый диск «помнит» дату и время создания на нем конкретного раздела, это фактически записано в номере созданного раздела (при форматировании). Нужна шапочка из фольги…
Этот номер мы можем увидеть в свойствах раздела, который показывают программы для управления разделами.
Номер 4610e64f 10e64611 — 16 цифр в шестнадцатеричной системе
Правую половинку номера тома мы также можем увидеть через команду DIR в режиме командной строки
10e6-4611
Он используется Windows уже для регистрации (например раздела) — как устройства, подключенного к системе, вот на фото ниже (как это красиво называется — «точка монтирования» — Mount point).
Этот номер уже записан в недрах реестра — в отличии от серийного номера раздела, записанного в заголовке тома на диске.
Этот же номер мы можем увидеть в bcdedit — как номер основного диска С для работы системы
Видно, что номер GUID используется также для идентификации текущей операционной системы (т.е. в загрузчике явно указано, какую операционную систему нужно загружать и на каком диске она находится).
Вы можете сохранить ссылку на эту страницу себе на компьютер в виде htm файла
Вы будете видеть наш сайт у себя в ленте
Нажмите «Нравится» или напишите сообщение
Создание идентификаторов UUID интерфейса
В этом разделе представлены сведения об универсальных уникальных идентификаторах (UUID) и служебной программе uuidgen в следующих разделах:
Что такое UUID?
Все интерфейсы должны быть однозначно идентифицированы в сети, чтобы клиенты могли их найти. В небольших сетях только имя интерфейса может быть достаточным для его распознавания. Однако это обычно нецелесообразно для больших сетей. Таким образом, разработчики обычно присваивают каждому интерфейсу универсальный уникальный идентификатор (UUID, взаимозаменяемый с термином GUID или глобальный уникальный идентификатор). UUID — это строка, содержащая набор шестнадцатеричных цифр. Каждый интерфейс имеет другой UUID. Дополнительные сведения см. в разделе строковый UUID.
Текстовое представление UUID — это строка, состоящая из 8 шестнадцатеричных цифр, за которыми следует дефис, за которым следуют три группы, разделенные дефисами 4 шестнадцатеричных цифр, за которыми следует дефис, за которым следуют 12 шестнадцатеричных цифр. Следующий пример является допустимой строкой UUID:
Пустые UUID называются пустыми UUID, а не нулевыми UUID. Термин nil означает все, что равно нулю, пусто, пусто или не инициализировано. Пустая строка, пустая запись базы данных или неинициализированный UUID являются примерами пустых значений.
Значение null — это конкретное нулевое значение. Он часто используется в программировании C и C++ вместе с указателями. Nil является более общим термином, чем null. Неинициализированные UUID интерфейсов объектов всегда должны называться пустыми UUID, а не нулевыми UUID.
Использование uuidgen
Корпорация Майкрософт предоставляет служебную программу с именем uuidgen для создания идентификаторов UUID. Служебная программа Uuidgen создает UUID в формате IDL-файла или в формате языка C.
При запуске служебной программы uuidgen из командной строки можно использовать следующие параметры команды.
Как правило, используется служебная программа Uuidgen, как показано в следующем примере.
uuidgen-i-Омяпп. idl
Эта команда создает UUID и сохраняет его в файле MIDL, который можно использовать в качестве шаблона. При выполнении предыдущей команды содержимое файла MyApp. idl будет выглядеть следующим образом:
Следующим шагом будет замена имени заполнителя, INTERFACENAME, фактическим именем интерфейса.
Про uuid-ы, первичные ключи и базы данных
Статья посвящена альтернативным версиям Qt-драйверов для работы с базами данных. По большому счету отличий от нативных Qt-драйверов не так много, всего пара: 1) Поддержка типа UUID; 2) Работа с сущностью «Транзакция» как с самостоятельным объектом. Но эти отличия привели к существенному пересмотру кодовой реализации исходных Qt-решений и изменили подход к написанию рабочего кода.
Первичный ключ: UUID или Integer?
Впервые с идеей использовать UUID в качестве первичного ключа я познакомился в 2003 году, работая в команде дельфистов. Мы разрабатывали программу для автоматизации технологических процессов на производстве. СУБД в проекте отводилась существенная роль. На тот момент это была FireBird версии 1.5. По мере усложнения проекта появились трудности с использованием целочисленных идентификаторов в качестве первичных ключей. Опишу пару сложностей:
Проблема архитектурная: периодически заказчики присылали справочные данные с целью включения их в новую версию дистрибутива. Иногда справочники содержали первичные ключи уже имеющиеся в нашей базе. Приходилось устранять коллизии в процессе агрегирования данных. На этом проблемы не заканчивались: при разворачивании нового дистрибутива периодически возникали обратные коллизии.
Проблема программная: чтобы получить доступ к вставленной записи нужно было выполнить дополнительный SELECT-запрос, который возвращал максимальное значение первичного ключа (значение для только что вставленной записи). Причем этот процесс должен был проходить в пределах одной транзакции. Далее можно было обновлять или корректировать запись. Это сейчас я знаю, что некоторые драйверы БД возвращают значение первичного ключа для вставленной записи, но в 2003 году мы такими знаниями не обладали, да и не припомню что бы Делфи-компоненты возвращали что-то подобное.
Использование UUID-ов в качестве первичных ключей сводило к минимуму архитектурную проблему, и полностью решало программную. UUID-ключ генерировался перед началом вставки записи на стороне программы, а не в недрах сервера БД, таким образом дополнительный SELECT-запрос стал не нужен, и требование единой транзакции утратило актуальность. FireBird версии 1.5 не имел нативной поддержки UUID-ов, поэтому использовались строковые поля длинной в 32 символа (дефисы из UUID-ов удалялись). Факт использования строковых полей в качестве первичных ключей нисколько не смущал, нам не терпелось опробовать новый подход при работе с данными.
У UUID-ов есть свои минусы: 1) Существенный объем; 2) Более низкая скорость работы по сравнению с целочисленными идентификаторами. В рамках проекта достоинства оказались более значимы, чем указанные недостатки. В целом, опыт оказался положительным, поэтому в последующих решениях при создании реляционных связей предпочтение отдавалось именно UUID-ам.
Примечание: Более подробный анализ UUID vs Integer для СУБД MS SQL можно посмотреть в статье «Первичный ключ – GUID или автоинкремент?»
Первый драйвер для FireBird
В 2012 году мне снова довелось поработать с FireBird. Нужно было создать небольшую программу по анализу данных. Разработка велась с использованием QtFramework. Примерно в это же время у FireBird вышла версия 2.5 с нативной поддержкой UUID-ов. Я подумал: «Почему бы не добавить в Qt-драйвер для FireBird поддержку типа QUuid?» Так появилась первая версия Qt-драйвера с поддержкой UUID-ов. Этот вариант не сильно отличался от оригинальной версии драйвера и, в основном, был ориентирован на использование в однопоточных приложениях.
Появление сущности «Транзакция»
Следующая модификация Qt-драйвера для FireBird произошла в конце 2018 года. Наша фирма взялась за разработку проекта по анализу данных большого объема. Для фирмы выросшей из стартап-а эта работа была очень важна, как с финансовой, так и с репутацио́нной точек зрения. Сроки исполнения были весьма жесткие. В качестве СУБД была выбрана FireBird, несмотря на определенные сомнения в ее пригодности. Хорошим вариантом могла бы стать PostgreSQL, но у нашей команды на тот момент отсутствовал опыт эксплуатации данной СУБД.
Новая концепция не нуждалась в сущности «транзакция», как в самостоятельной единице, тем не менее, я не стал ее упразднять. Дальнейшая эксплуатация показала, что наличие объекта «транзакция» делает работу с базой данных более гибкой, дает больше инвариантов при написании кода. Например, разработчик может передать объект «Транзакция» в функцию в качестве параметра, явно говоря таким образом, что внутри нужно работать в контексте указанной транзакции. В функции можно проверить активна транзакция или нет, можно выполнить COMMIT или ROLLBACK. Для вспомогательных операций можно создавать альтернативную транзакцию, не затрагивающую основную. Таких возможностей нет у нативных Qt-драйверов.
Ниже приведен пример с тремя функциями, которые последовательно вызываю друг друга. Каждая функция запрашивает объект подключения к базе данных (Driver) у пула коннектов. Так как функции вызываются в одном потоке, они получают объект коннекта, ссылающийся на одно и тоже подключение к БД. Далее в каждой функции создается собственный независимый объект транзакции и все последующие запросы будут выполняются в его контексте.
Приведенный пример не будет работать с нативным Qt-драйвером, причина описана выше: ограничение на одно подключение и одну транзакцию
В примере экземпляры транзакций (1-3) созданы для наглядности. В рабочем коде их можно опустить. В этом случае транзакции будут создаваться неявно внутри объекта QSqlQuery. Неявные транзакции всегда завершаются ROLLBACK-ом для SELECT-запросов и попыткой COMMIT-а для всех остальных.
Ниже показано как можно использовать одну транзакцию для трех sql-запросов. Подтвердить или откатить транзакцию можно в любой из трех функций.
Драйвер для PostgreSQL
Драйвер для MS SQL
Чего нет в классе Driver
Описываемые здесь драйверы не повторяют один в один функционал Qt-решений. В классе оставлены следующие методы:
С введением сущности «Транзакция» они утратили актуальность и нужны исключительно для отладки и диагностирования их вызовов из Qt-компонентов.
Ряд функций не используются нами в работе, поэтому они либо не реализованы, либо реализованы и помечены внутри программными точками останова, то есть разработчику при первом вызове придется их отладить. Вот эти функции:
Заморожена поддержка механизма событий. Обсудив с коллегами этот функционал, мы пришли к заключению, что на данном этапе в нем нет необходимости. Возможно, в будущем решение будет пересмотрено, но пока у нас нет серьезных доводов в пользу событийного механизма.
Новые функции
Лицензионные ограничения
Зависимости
В реализации драйверов используется система логирования ALog, которая является составной частью библиотеки общего назначения SharedTools.
Демо-примеры
Специально для этой статьи был создан демонстрационный проект. Он содержит примеры работы с тремя СУБД: FireBird, PostgreSQL, MS SQL. Репозиторий с драйверами расположен здесь, он подключен в проект как субмодуль. Библиотека SharedTools так же подключена как субмодуль.
Проект создан с использованием QtCreator, сборочная система QBS. Есть четыре сборочных сценария:
Драйвера в первую очередь разрабатывались для работы в Linux, поэтому эксплуатационное тестирование выполнялось именно для этой ОС. В Windows будет работать FireBird-драйвер (проверено), для остальных драйверов тестирование не проводилось.
Демо-примеры записывают следующие логи:
При первом запуске, примеры проверяют наличие тестовой базы данных. Если базы не обнаружено, в лог-файл будет выведен скрипт для ее создания.
Заключение
Черновой вариант статьи не предполагал наличие этого раздела, за что старый товарищ и, по совместительству, корректор подверг меня критике: «Мол, непонятна мотивация, целеполагание неясно. Зачем ты вообще писал эту статью?!» Что ж, исправляюсь!