Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии

7. АсиммСтрия ΠΈ эксцСсс эмпиричСского распрСдСлСния

Π’ ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΡ… ΡΡ‚Π°Ρ‚ΡŒΡΡ… ΠΌΡ‹ познакомились с показатСлями Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅Π½Π΄Π΅Π½Ρ†ΠΈΠΈ ΠΈ Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΈ, ΠΈ сСйчас рассмотрим Π΅Ρ‰Ρ‘ ΠΏΠ°Ρ€Ρƒ характСристик статистичСской совокупности. Для Ρ‚Π΅Ρ…, ΠΊΡ‚ΠΎ Π·Π°ΡˆΡ‘Π» с поисковика ΠΈ Ρ…ΠΎΡ‡Π΅Ρ‚ ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ‚Π΅ΠΌΡƒ с Π°Π·ΠΎΠ², сразу ссылка Π½Π° ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΡƒΡ€ΠΎΠΊ: ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ статистика для Β«Ρ‡Π°ΠΉΠ½ΠΈΠΊΠΎΠ²Β», Ρ‚Π°ΠΌ ΠΆΠ΅, Π² ΠΊΠΎΠ½Ρ†Π΅, список всСх статСй курса. И Π΄ΠΎ ΡΡ‚Π°Ρ‚ΡŒΠΈ 7-ΠΉ – ΠΊΠ°ΠΊ Ρ€ΡƒΠΊΠΎΠΉ ΠΏΠΎΠ΄Π°Ρ‚ΡŒ, послС Ρ‡Π΅Π³ΠΎ Π±ΡƒΠ΄Π΅Ρ‚ нСбольшой ΠΈ ΠΎΡ‡Π΅Π½ΡŒ приятый экзамСн.

Π˜Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ асиммСтрия ΠΈ эксцСсс? Говоря простым языком, это ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠ΅ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ распрСдСлСния. АсиммСтрия Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅Ρ‚ ΠΌΠ΅Ρ€Ρƒ ΡΠΊΠΎΡˆΠ΅Π½Π½ΠΎΡΡ‚ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π²Π»Π΅Π²ΠΎ / Π²ΠΏΡ€Π°Π²ΠΎ, Π° эксцСсс – ΠΌΠ΅Ρ€Ρƒ Π΅Π³ΠΎ высоты.

Π”Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ для эмпиричСских, Ρ‚Π°ΠΊ ΠΈ для тСорСтичСских распрСдСлСний, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΡ‹ ΠΈΠ·ΡƒΡ‡ΠΈΠ»ΠΈ Π² курсС Ρ‚Π΅ΠΎΡ€ΠΈΠΈ вСроятностСй, ΠΈ Π·Π° «эталон» симмСтрии принято Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ распрСдСлСниС:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии
ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ любоС Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ распрСдСлСниС строго симмСтрично ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ своСго Ρ†Π΅Π½Ρ‚Ρ€Π°, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π΅Π³ΠΎ асиммСтрия Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ. Π”Π°Π½Π½Ρ‹ΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊ каТСтся ΠΏΠΎΠ»ΠΎΠ³ΠΈΠΌ, Π½ΠΎ стандартноС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтриив Π΄Π°Π½Π½ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ достаточно Π²Π΅Π»ΠΈΠΊΠΎ (см. Π½Π° синиС Ρ‚ΠΎΡ‡ΠΊΠΈ) ΠΈ Π½Π° самом Π΄Π΅Π»Π΅ такая высота Β«Π³Π°Ρ€ΠΌΠΎΠ½ΠΈΡ‡Π½Π°Β». ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ эксцСсс Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ распрСдСлСния (любого) ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ Π·Π° Β«ΠΎΡ‚ΠΏΡ€Π°Π²Π½ΡƒΡŽΒ» Π½ΡƒΠ»Π΅Π²ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ.

ΠŸΠΎΡ‡Π΅ΠΌΡƒ ΠΈΠΌΠ΅Π½Π½ΠΎ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ распрСдСлСниС? ΠŸΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ философскоС – ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΡ‡ΠΈΡ‚Π°ΠΉΡ‚Π΅ эту ΠΈΠ½Ρ‚Π΅Ρ€Π΅ΡΠ½Π΅ΠΉΡˆΡƒΡŽ ΡΡ‚Π°Ρ‚ΡŒΡŽ ΠΏΠΎ ссылкС, Ссли Π΅Ρ‰Ρ‘ Π½Π΅ успСли этого ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ!

Π’ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ вСроятностСй ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ строгиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для вычислСния коэффициСнтов асиммСтрии Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтриии эксцСсса Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии(Π±ΡƒΠ΄ΡƒΡ‚ Π½ΠΈΠΆΠ΅), Π½ΠΎ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΠΌΠ½Π΅ Ρ‚Π°ΠΊΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π΅ Π²ΡΡ‚Ρ€Π΅Ρ‡Π°Π»ΠΈΡΡŒ. И поэтому я сразу ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠΆΡƒ ΠΊ статистикС ΠΈ распрСдСлСниям эмпиричСским, Ρ‚.ΠΊ. здСсь Ρ‚Π°ΠΊΠΈΡ… Π·Π°Π΄Π°Ρ‡ ΠΊΠ°ΠΊ Ρ€Π°Π· Π²Ρ‹ΡˆΠ΅ ΠΊΡ€Ρ‹ΡˆΠΈ. Π‘ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ эксцСссом, Ссли Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒΡΡ тСматичСски πŸ™‚

Начнём с асиммСтрии. АсиммСтрия Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅Ρ‚ ΠΌΠ΅Ρ€Ρƒ ΡΠΊΠΎΡˆΠ΅Π½Π½ΠΎΡΡ‚ΠΈ ΠΏΠΎΠ»ΠΈΠ³ΠΎΠ½Π° ΠΈΠ»ΠΈ гистограммы Π²Π»Π΅Π²ΠΎ / Π²ΠΏΡ€Π°Π²ΠΎ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ самого высокого участка, ΠΈ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… случаях для Β«ΠΏΡ€ΠΈΠΊΠΈΠ΄ΠΊΠΈΒ» асиммСтрии достаточно Π²Π·Π³Π»ΡΠ½ΡƒΡ‚ΡŒ Π½Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠΈ. Π’Π°ΠΊ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, посмотрим Π½Π° ΠΏΠΎΠ»ΠΈΠ³ΠΎΠ½ частот ΠΈΠ· ΠŸΡ€ΠΈΠΌΠ΅Ρ€Π° 8:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии
И, Π² ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ΅, Ρ‚ΡƒΡ‚ всё Π²ΠΈΠ΄Π½ΠΎ – ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ скорСС симмСтричСн, Ρ‡Π΅ΠΌ асиммСтричСн πŸ™‚

ΠŸΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠΌ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅ΠΌ симмСтрии являСтся равСнство срСднСй, ΠΌΠΎΠ΄Ρ‹ ΠΈ ΠΌΠ΅Π΄ΠΈΠ°Π½Ρ‹: Π½ΠΎ Π² ΠΆΠΈΠ·Π½ΠΈ Ρ‚Π°ΠΊΠΎΠ³ΠΎ идСального совпадСния, ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ, Π½Π΅ Π±Ρ‹Π²Π°Π΅Ρ‚ (Π΄Π°ΠΆΠ΅ Ρ‚Π΅Π»ΠΎ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ асиммСтрично), ΠΈ поэтому Ρƒ Β«ΠΏΠΎΡ‡Ρ‚ΠΈ симмСтричных» распрСдСлСний эти ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒΡΡ ΠΎΡ‡Π΅Π½ΡŒ Π±Π»ΠΈΠ·ΠΊΠΎ Π΄Ρ€ΡƒΠ³ ΠΊ Π΄Ρ€ΡƒΠ³Ρƒ. И Π² самом Π΄Π΅Π»Π΅, ΠΊΠ°ΠΊ ΠΌΡ‹ вычислили Π² ΠŸΡ€ΠΈΠΌΠ΅Ρ€Π΅ 8: Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии.

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ рассматриваСмыС распрСдСлСния ΠΈΠΌΠ΅ΡŽΡ‚ Π΅Π΄ΠΈΠ½ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ ΠΌΠΎΠ΄Π°Π»ΡŒΠ½ΡƒΡŽ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ, ΠΈ Π΄Π°Π»Π΅Π΅ Ρ€Π΅Ρ‡ΡŒ ΠΏΠΎΠΉΠ΄Ρ‘Ρ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎ Ρ‚Π°ΠΊΠΈΡ… распрСдСлСниях.

ΠŸΡ€Π°Π²ΠΎΡΡ‚ΠΎΡ€ΠΎΠ½Π½ΡΡ асиммСтрия характСризуСтся ΡƒΠ΄Π»ΠΈΠ½Ρ‘Π½Π½Ρ‹ΠΌ ΠΏΡ€Π°Π²Ρ‹ΠΌ «хвостом», смотрим Π½Π° гистограмму ΠŸΡ€ΠΈΠΌΠ΅Ρ€Π° 10:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии
ΠŸΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠΌ правостороннСй асиммСтрии являСтся Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚, Ρ‡Ρ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, ΠΈ это Π½Π΅ΡƒΠ΄ΠΈΠ²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ – вСдь справа находится Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ количСство Π²Π°Ρ€ΠΈΠ°Π½Ρ‚, ΠΈ поэтому срСдняя Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтриисмСщСна Π²ΠΏΡ€Π°Π²ΠΎ. И поэтому английский статистик ΠšΠ°Ρ€Π» ΠŸΠΈΡ€ΡΠΎΠ½, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π΅Ρ‰Ρ‘ Π½Π΅ Ρ€Π°Π· нас ΠΏΠΎΡ€Π°Π΄ΡƒΠ΅Ρ‚ своими ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ, ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ» ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для расчёта коэффициСнта асиммСтрии:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, Π³Π΄Π΅ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– срСднСС квадратичСскоС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ статистичСской совокупности. Π§Ρ‚ΠΎ Ρ‚ΠΎΠΆΠ΅ Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ, вСдь Ρƒ Ρ€Π°Π·Π½Ρ‹Ρ… распрСдСлСний – Ρ€Π°Π·Π½Ρ‹ΠΉ «разброс» Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΈ Ρ€Π°Π·Π½Ρ‹Π΅ прСдставлСния ΠΎ ΠΌΠ΅Ρ€Π΅ асиммСтрии.

ЛСвостороння асиммСтрия, Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ ΡƒΠ΄Π»ΠΈΠ½Ρ‘Π½Π½Ρ‹ΠΌ Π»Π΅Π²Ρ‹ΠΉ «хвостом» ΠΈ нСравСнством Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии,…. ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠΈ быстро Π½Π΅ нашлось, поэтому просто Ρ€Π°Π·Π²Π΅Ρ€Π½Ρƒ Ρ‡Π΅Ρ€Ρ‚Ρ‘ΠΆ Π² графичСском Ρ€Π΅Π΄Π°ΠΊΡ‚ΠΎΡ€Π΅:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии
Из Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтриислСдуСт, Ρ‡Ρ‚ΠΎ Π² лСвостороннСм случаС коэффициСнт асиммСтрии ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»Π΅Π½ (Ρ‚.ΠΊ. Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии), Π° Π² правостороннСм – ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»Π΅Π½ (Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии), ΠΈ Ρ‡Π΅ΠΌ большС Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтриипо ΠΌΠΎΠ΄ΡƒΠ»ΡŽ – Ρ‚Π΅ΠΌ сильнСС скос распрСдСлСния.

НСдостаток Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠŸΠΈΡ€ΡΠΎΠ½Π° состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΎΠ½Π° описываСт лишь Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ распрСдСлСния ΠΈ практичСски Π½Π΅ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Π΅Ρ‚ Β«ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΡŽΒ». И, Ρ‡Ρ‚ΠΎΠ±Ρ‹ вас Ρ‚ΠΎΠΌΠΈΡ‚ΡŒ, сразу продвинутая Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°, которая ΠΎΡ…Π²Π°Ρ‚Ρ‹Π²Π°Π΅Ρ‚ всС Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹, для опрСдСлённости Π·Π°ΠΏΠΈΡˆΡƒ Π΅Ρ‘ для Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎΠΉ совокупности ΠΎΠ±ΡŠΡ‘ΠΌΠ° Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, Π³Π΄Π΅ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– ΠΊΡƒΠ± стандартного Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎΠ³ΠΎ отклонСния, Π° Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ эмпиричСский ΠΌΠΎΠΌΠ΅Π½Ρ‚ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ порядка. Для нСсгруппированной статичСской совокупности ΠΎΠ½ рассчитываСтся Ρ‚Π°ΠΊ:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии( Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– выборочная срСдняя),
Π° для сформированного Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ряда – Ρ‚Π°ΠΊ:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, Π³Π΄Π΅ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ дискрСтного ряда ΠΈΠ»ΠΈ сСрСдины частичных ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ряда, Π° Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ частоты.

Бмысл Π·Π½Π°ΠΊΠΎΠ² Ρ‚ΠΎΡ‚ ΠΆΠ΅ самый: Ссли Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, Ρ‚ΠΎ распрСдСлСниС скошСно Π²ΠΏΡ€Π°Π²ΠΎ, Ссли Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– Ρ‚ΠΎ Π²Π»Π΅Π²ΠΎ. ΠŸΡ€ΠΈ этом принята ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ условная градация: Ссли ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ мСньшС, Ρ‡Π΅ΠΌ 0,25, Ρ‚ΠΎ асиммСтрия Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Π°, Ссли Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, Ρ‚ΠΎ умСрСнная, ΠΈ Ссли Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, Ρ‚ΠΎ сущСствСнная.

И Ρ‡Π΅ΠΌ ΠœΠ•ΠΠ¬Π¨Π• ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, Ρ‚Π΅ΠΌ рассматриваСмоС эмпиричСскоС распрСдСлСниС Π‘Π›Π˜Π–Π• ΠΊ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии.

Π‘ΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ вСроятностСй: асиммСтрия случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ рассчитываСтся ΠΏΠΎ «родствСнной» Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, Π³Π΄Π΅ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– срСднСС квадратичСскоС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅, Π° Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ тСорСтичСский ΠΌΠΎΠΌΠ΅Π½Ρ‚ 3-Π³ΠΎ порядка. Для дискрСтной случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΎΠ½ рассчитываСтся Ρ‚Π°ΠΊ: Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, Π° для Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ – Ρ‡Π΅Ρ€Π΅Π· ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»: Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΎΠ± эксцСссС Π·Π°ΠΌΠΎΠ»Π²ΠΈΠΌ слово. Он Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅Ρ‚ высоту ΠΈ ΠΎΡ‡Π΅Π½ΡŒ ΠΊΠΎΠ²Π°Ρ€Π½Ρ‹ΠΉ. Π’ Ρ‚ΠΎΠΌ смыслС, Ρ‡Ρ‚ΠΎ Π³Π»Π°Π·Π° Π±ΡƒΠ΄ΡƒΡ‚ часто ΠΎΠ±ΠΌΠ°Π½Ρ‹Π²Π°Ρ‚ΡŒ. Π’Π°ΠΊ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, посмотрим Π½Π° Ρ‡Π΅Ρ€Ρ‚Ρ‘ΠΆ ΠŸΡ€ΠΈΠΌΠ΅Ρ€Π° 7 ΠΈΠ· ΡΡ‚Π°Ρ‚ΡŒΠΈ ΠΎΠ± ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΡŒΠ½ΠΎΠΌ Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΌ рядС:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии
Ну Π²ΠΈΠ΄Π½ΠΎ ΠΆΠ΅ – гистограмма ΠΈ ΠΏΠΎΠ»ΠΈΠ³ΠΎΠ½ ΡΠ΅Ρ€ΡŒΡ‘Π·Π½ΠΎ вытянуты Π²Π²Π΅Ρ€Ρ…. Но это Ρ‚ΠΎΠ»ΡŒΠΊΠΎ каТСтся. Π”Π΅Π»ΠΎ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ стандартноС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрииэтого распрСдСлСния Π½Π΅Π²Π΅Π»ΠΈΠΊΠΎ, ΠΈ для сСго нСбольшого рассСяния такая высота ДАЖЕ ΠœΠΠ›Π. МалА – ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с «эталонным» Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ распрСдСлСниСм с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии.

ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π°Π½Π°Π»ΠΈΡ‚ΠΈΠΊΠ° ΠΈ Π΅Ρ‰Ρ‘ Ρ€Π°Π· Π°Π½Π°Π»ΠΈΡ‚ΠΈΠΊΠ°. ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ эксцСсса эмпиричСского распрСдСлСния рассчитываСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, Π³Π΄Π΅ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ эмпиричСский ΠΌΠΎΠΌΠ΅Π½Ρ‚ Ρ‡Π΅Ρ‚Π²Ρ‘Ρ€Ρ‚ΠΎΠ³ΠΎ порядка:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– для нСсгруппированных Π΄Π°Π½Π½Ρ‹Ρ…, ΠΈ
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– для сформированного Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ряда.

Для случайных Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ΠΈΠ· Ρ‚Π΅Ρ€Π²Π΅Ρ€Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° схоТа: Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, Π³Π΄Π΅ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– для дискрСтной, ΠΈ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– для Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ случайной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹.

Если Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, Ρ‚ΠΎ эмпиричСскоС распрСдСлСниС являСтся Π±ΠΎΠ»Π΅Π΅ высоким (Β«ΠΎΡΡ‚Ρ€ΠΎΠ²Π΅Ρ€ΡˆΠΈΠ½Π½Ρ‹ΠΌΒ») – ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ «эталонного» Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ распрСдСлСния с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Если ΠΆΠ΅ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– Ρ‚ΠΎ Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΈΠΌ ΠΈ ΠΏΠΎΠ»ΠΎΠ³ΠΈΠΌ. И Ρ‡Π΅ΠΌ большС Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтриипо ΠΌΠΎΠ΄ΡƒΠ»ΡŽ, Ρ‚Π΅ΠΌ «аномальнСС» высота Π² Ρ‚Ρƒ ΠΈΠ»ΠΈ ΠΈΠ½ΡƒΡŽ сторону.

Π’ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π²Ρ‹ΡˆΠ΅, ΠΊΠ°ΠΊ Π½ΠΈ странно, Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, ΠΈ сСйчас ΠΌΡ‹ убСдимся Π² этом аналитичСски:

Π˜Ρ‚Π°ΠΊ, сто ΠΏΠ°Ρ‡Π΅ΠΊ чая ΠΈΠ· ΠŸΡ€ΠΈΠΌΠ΅Ρ€Π° 7 ( Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– сСрСдины ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ²):
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии

ΠΈ Π½Π°ΠΌ трСбуСтся Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ коэффициСнты асиммСтрии ΠΈ эксцСсса

РСшСниС: ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°Ρ… асиммСтрии ΠΈ эксцСсса Ρ„ΠΈΠ³ΡƒΡ€ΠΈΡ€ΡƒΠ΅Ρ‚ стандартноС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅, Ρ‚ΠΎ сначала Π½ΡƒΠΆΠ½ΠΎ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΡƒΡŽ ΡΡ€Π΅Π΄Π½ΡŽΡŽ ΠΈ Π΄ΠΈΡΠΏΠ΅Ρ€ΡΠΈΡŽ.

Вычислим произвСдСния Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, ΠΈΡ… сумму ΠΈ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрииграмм – срСдний вСс ΠΏΠ°Ρ‡ΠΊΠΈ чая. Π”ΠΈΡΠΏΠ΅Ρ€ΡΠΈΡŽ здСсь сподручнСС Π½Π°ΠΉΡ‚ΠΈ Π½Π΅ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅, Π° ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ: Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Для этого рассчитаСм произвСдСния Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтриии сразу Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии

Π›ΠΎΠ²ΠΊΠΎΡΡ‚ΡŒ Ρ€ΡƒΠΊ ΠΈ Π½ΠΈΠΊΠ°ΠΊΠΈΡ… трудностСй, Π²Ρ‹ ΡƒΠ΄ΠΈΠ²ΠΈΡ‚Π΅ΡΡŒ, ΠΊΠ°ΠΊ всё быстро:

БобствСнно, Ρ„ΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ расчёты:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии
здСсь ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π΅Π΅, ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ, ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ, Π½ΠΎ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ этим ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅Π³Π°ΡŽΡ‚.

Π¦Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ 3-Π³ΠΎ ΠΈ 4-Π³ΠΎ порядков:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии

И, Π½Π°ΠΊΠΎΠ½Π΅Ρ†, коэффициСнты. Вычислим коэффициСнт асиммСтрии:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ, распрСдСлСниС ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ сущСствСнной правостороннСй асиммСтриСй, Ρ‡Ρ‚ΠΎ, кстати, Ρ…ΠΎΡ€ΠΎΡˆΠΎ Π±Ρ‹Π»ΠΎ Π²ΠΈΠ΄Π½ΠΎ ΠΏΠΎ Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΡƒ.

Вычислим коэффициСнт эксцСсса:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– Π²ΠΎΡ‚ ΠΎΠ½ΠΎ ΠΊΠ°ΠΊ! ΠžΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ΡΡ, распрСдСлСниС Π½Π΅ Ρ‚ΠΎ Ρ‡Ρ‚ΠΎ Π²Ρ‹ΡˆΠ΅, Π° Π·Π°ΠΌΠ΅Ρ‚Π½ΠΎ Π½ΠΈΠΆΠ΅, Ρ‡Π΅ΠΌ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ распрСдСлСниС с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии

ΠžΡ‚Π²Π΅Ρ‚: Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии

Π’ΠΎΡ‚ Ρ‚Π°ΠΊΠΎΠΉ Π²ΠΎΡ‚ Ρƒ нас получился эксСкас πŸ™‚

Помимо гСомСтричСских Ρ„ΠΎΡ€ΠΌ, эти коэффициСнты ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Β«ΠΏΡ€ΠΈΠΊΠΈΠ½ΡƒΡ‚ΡŒΒ», насколько Π±Π»ΠΈΠ·ΠΊΠ° ΠΊ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ выборочная, Π½ΠΎ ΠΈ вся Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½Π°Ρ ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ. Π­Ρ‚ΠΎ ΠΎΠ΄Π½Π° ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΡ… Π·Π°Π΄Π°Ρ‡ статистики, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΡ‹ Ρ€Π°Π·Π±Π΅Ρ€Ρ‘ΠΌ Π² Ρ€Π°Π·Π΄Π΅Π»Π΅ БтатистичСскиС Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹.

Ну Π° сСйчас я ΠΏΡ€Π΅Π΄Π»Π°Π³Π°ΡŽ Π²Π°ΠΌ нСбольшоС экзамСнационноС Π·Π°Π΄Π°Π½ΠΈΠ΅ ΠΏΠΎ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ сСми ΡƒΡ€ΠΎΠΊΠ°ΠΌ. Оно Ρ‚ΠΈΠΏΠΈΡ‡Π½ΠΎ для студСнчСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΈ – Π΄Π°Π½Π° статистичСская ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ, ΠΈ трСбуСтся Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎ-ΠΌΠ½ΠΎΠ³ΠΎ Ρ‡Π΅Π³ΠΎ. Π’Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡŒΡ‚Π΅, всё Π»ΠΈ Π²Ρ‹ усвоили, всё Π»ΠΈ ΡƒΠΌΠ΅Π΅Ρ‚Π΅:

Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ экспСримСнта ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π΄Π°Π½Π½Ρ‹Π΅, записанныС Π² Π²ΠΈΠ΄Π΅ статистичСского ряда:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии
…это Π΅Ρ‰Ρ‘ Π΅Ρ€ΡƒΠ½Π΄Π° πŸ™‚

И сразу ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Π² условии Ρ€Π΅Ρ‡ΡŒ ΠΈΠ΄Ρ‘Ρ‚ ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°Ρ… экспСримСнта, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΏΠ΅Ρ€Π΅Π΄ Π½Π°ΠΌΠΈ выборочная ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ, Ρ‚.ΠΊ. тСорСтичСски ΠΎΠΏΡ‹Ρ‚Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡ‚ΡŒ бСсконСчноС количСство Ρ€Π°Π·.

1) Π‘ΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΡŒΠ½Ρ‹ΠΉ Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ряд, состоящий ΠΈΠ· 9 Ρ€Π°Π²Π½Ρ‹Ρ… ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ². Π’ΠΈΠ΄Π΅ΠΎ Π² ΠΏΠΎΠΌΠΎΡ‰ΡŒ.

3) Найти ΠΌΠΎΠ΄Ρƒ ΠΈ ΠΌΠ΅Π΄ΠΈΠ°Π½Ρƒ.

5) Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ коэффициСнты асиммСтрии ΠΈ эксцСсса, ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

НС Ρ‚ΡƒΡˆΡƒΠΉΡ‚Π΅ΡΡŒ – я с Π²Π°ΠΌΠΈ! ΠšΡ€Π°Ρ‚ΠΊΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ для свСрки Π²Π½ΠΈΠ·Ρƒ страницы.

И Π½Π° этом, ΠΊΠ°ΠΊ Π²Ρ‹ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ догадались, Π΄Π΅Π»ΠΎ Π½Π΅ заканчиваСтся, поэтому сохранитС Ρ„Π°ΠΉΠ» с Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ! Виповая Π·Π°Π΄Π°Ρ‡Π° содСрТит большС ΠΏΡƒΠ½ΠΊΡ‚ΠΎΠ², ΠΈ послС изучСния Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹ ΠΎ Π·Π°ΠΊΠΎΠ½Π΅ распрСдСлСния Π³Π΅Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ совокупности, выполняСм ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ задания:

6) По Π½Π°ΠΉΠ΄Π΅Π½Π½Ρ‹ΠΌ характСристикам ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Ρ„ΠΎΡ€ΠΌΠ΅ эмпиричСского ряда распрСдСлСния.

7) ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ ΠΊΡ€ΠΈΠ²ΡƒΡŽ ΠΏΠΎ ΠΎΠΏΡ‹Ρ‚Π½Ρ‹ΠΌ Π΄Π°Π½Π½Ρ‹ΠΌ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ гистограммы.

8) ΠŸΡ€ΠΎΠΈΠ·Π²Π΅ΡΡ‚ΠΈ ΠΎΡ†Π΅Π½ΠΊΡƒ стСпСни близости тСорСтичСского распрСдСлСния эмпиричСскому ряду с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ критСрия согласия ΠŸΠΈΡ€ΡΠΎΠ½Π° Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ значимости 0,05.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 20. РСшСниС:

1) По статистичСским Π΄Π°Π½Π½Ρ‹ΠΌ Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ: Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии.
Вычислим Ρ€Π°Π·ΠΌΠ°Ρ… Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΈ: Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрииСд.
По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ, Π²Ρ‹Π±ΠΎΡ€ΠΊΡƒ слСдуСт Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрииравных ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ², Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π΄Π»ΠΈΠ½Π° частичного ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрииСд.
Π Π°Π·ΠΌΠ΅Ρ‚ΠΈΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹ ΠΈ подсчитаСм частоты Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтриипо ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρƒ, послС Ρ‡Π΅Π³ΠΎ убСдимся, Ρ‡Ρ‚ΠΎ ΠΎΠ±ΡŠΡ‘ΠΌ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Вычислим ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ частоты Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтриии ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½Π½Ρ‹Π΅ частоты Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии

2) ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ гистограмму ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… частот:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии
ΠΈ ΡΠΌΠΏΠΈΡ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ распрСдСлСния:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии

3) ΠœΠΎΠ΄Ρƒ вычислим ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, Π² Π΄Π°Π½Π½ΠΎΠΌ случаС:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– ниТняя Π³Ρ€Π°Π½ΠΈΡ†Π° модального ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°;
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– Π΄Π»ΠΈΠ½Π° модального ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°;
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– частота модального ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°;
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– частота ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°;
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– частота ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрииСд.

ΠœΠ΅Π΄ΠΈΠ°Π½Ρƒ вычислим ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии, Π² Π΄Π°Π½Π½ΠΎΠΌ случаС:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– ΠΎΠ±ΡŠΡ‘ΠΌ Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎΠΉ совокупности;
ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρƒ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ содСрТит ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтриии Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– Π΅Π³ΠΎ ниТняя Π³Ρ€Π°Π½ΠΈΡ†Π°;
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– Π΄Π»ΠΈΠ½Π° ΠΌΠ΅Π΄ΠΈΠ°Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°;
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– частота ΠΌΠ΅Π΄ΠΈΠ°Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°;
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии– накоплСнная частота ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрииСд.

4) Найдём сСрСдины Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрииинтСрвалов, произвСдСния Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтриии вычислим Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΡƒΡŽ ΡΡ€Π΅Π΄Π½ΡŽΡŽ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрииСд., послС Ρ‡Π΅Π³ΠΎ Π·Π°ΠΏΠΎΠ»Π½ΠΈΠΌ ΠΎΡΡ‚Π°Π²ΡˆΡƒΡŽΡΡ Ρ‡Π°ΡΡ‚ΡŒ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΈ рассчитаСм ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии
Выборочная диспСрсия:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии,
Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎΠ΅ срСднСС квадратичСскоС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрииСд.,
коэффициСнт Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΈ:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии

5) Вычислим Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ эмпиричСскиС ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ 3-Π³ΠΎ ΠΈ 4-Π³ΠΎ порядков:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии
коэффициСнт асиммСтрии:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии
ΠΈ коэффициСнт эксцСсса:
Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, выборочная ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ практичСски симмСтрична, Π½ΠΎ нСсколько Π½ΠΈΠΆΠ΅, Ρ‡Π΅ΠΌ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ распрСдСлСниС с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии.

Автор: Π•ΠΌΠ΅Π»ΠΈΠ½ АлСксандр

(ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ Π½Π° Π³Π»Π°Π²Π½ΡƒΡŽ страницу)

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии Zaochnik.com – ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ ΠΏΠΎΠΌΠΎΡ‰ΡŒ студСнтам

cΠΊΠΈΠ΄ΠΊa 15% Π½Π° ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ Π·aΠΊaΠ·, ΠΏΡ€oΠΌoΠΊoΠ΄: 5530-hihi5

Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ коэффициСнт асиммСтрии Tutoronline.ru – ΠΎΠ½Π»Π°ΠΉΠ½ Ρ€Π΅ΠΏΠ΅Ρ‚ΠΈΡ‚ΠΎΡ€Ρ‹ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π°ΠΌ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *