Что покрывает гладкая мышечная ткань

Что покрывает гладкая мышечная ткань

Это ткань энтомезенхимного происхождения, которая делится на два вида: висцеральную и сосудистую. В эмбриональном гистогенезе даже электронно-микроскопически трудно отличить мезенхимные предшественники фибробластов от гладких миоцитов. В малодифференцированных гладких миоцитах развиты гранулярная эндоплазматическая сеть, комплекс Гольджи. Тонкие филаменты ориентированы вдоль длинной оси клетки. По мере развития размеры клетки и число филаментов в цитоплазме возрастают. Постепенно объем цитоплазмы, занятый сократительными филаментами, увеличивается, расположение их становится все более упорядоченным. Пролиферативная активность гладких миоцитов в миогенезе постепенно снижается. Это происходит в результате увеличения продолжительности клеточного цикла, выхода клеток из цикла репродукции и перехода в дифференцированное состояние.

Однако и в дефинитивном состоянии в гладкой мышечной ткани клеточная регенерация в виде размножения миоцитов полностью не прекращается. Существуют данные о том, что пролиферация и дифференцировка в большей степени свойственна субпопуляции малых (по размерам) гладких миоцитов.

Строение гладкой мышечной ткани. Структура дефинитивных гладких миоцитов (лейомиоцитов), входящих в состав внутренних органов и стенки сосудов, имеет много общего, но в то же время характеризуется гетероморфией. Так, в стенках вен и артерий обнаруживаются овоидные, веретеновидные, отростчатые миоциты длиной 10-40 мкм, доходящие иногда до 140 мкм.

Что покрывает гладкая мышечная ткань. Смотреть фото Что покрывает гладкая мышечная ткань. Смотреть картинку Что покрывает гладкая мышечная ткань. Картинка про Что покрывает гладкая мышечная ткань. Фото Что покрывает гладкая мышечная тканьГладкая мышечная ткань

Наибольшей длины гладкие миоциты достигают в стенке матки — до 500 мкм. Диаметр миоцитов колеблется от 2 до 20 мкм. В зависимости от характера внутриклеточных биосинтетических процессов различают контрактилъные и секреторные миоциты. Первые специализированы на функции сокращения, но вместе с тем сохраняют секреторную активность. Плазмолемма расслабленной клетки имеет ровную поверхность, а при сокращении становится складчатой. В центре клетки имеется палочковидное ядро, которое при сокращении клетки спиралевидно изгибается. Практически все ядра миоцитов содержат диплоидное количество ДНК. Гладкая эндоплазматическая сеть занимает примерно 2-7% объема цитоплазмы, а гранулярная сеть в контрактильных миоцитах выражена плохо. Митохондрии мелкие, сферические или овоидные, расположены у полюсов ядра. Характерной чертой гладких миоцитов является наличие множества впячиваний (кавеол) плазмолеммы, содержащих ионы кальция.

Секреторные миоциты (синтетические) по своей ультраструктуре напоминают фибробласты, однако содержат в цитоплазме пучки тонких миофиламентов, расположенные на периферии клетки. В цитоплазме хорошо развиты комплекс Гольджи, гранулярная эндоплазматическая сеть, много митохондрий, гранул гликогена, свободных рибосом и полисом. По степени зрелости такие клетки относят к малодифференцированным.

Сократительный аппарат миоцитов представлен тонкими актиновыми филамен-тами (гладкомышечным альфа-актином), связанными с тропомиозином. Толстые нити состоят из миозина, мономеры которого располагаются вблизи филаментов актина. Соотношение актиновых и миозиновых филаментов в гладком миоците составляет 12 к 1. Важным компонентом контрактильного аппарата миоцитов являются электронно-плотные структуры — тельца прикрепления, расположенные свободно в цитоплазме (плотные тельца) или тесно связанные с плазмолеммой. Основными белковыми компонентами плотных телец являются альфа-актинин, актин (немышечный) и кальпонин, что позволяет расссматривать их как функциональный эквивалент Z-линий миофибрилл скелетной мышцы. Актиновые филаменты фиксируются на плотных тельцах. Промежуточные филаменты, включающие десмин и виментин, обеспечивают связи между плотными тельцами и плазмолеммой, образуя прикрепительные пластины.

Сократительные белки формируют решетчатую структуру, закрепленную по окружности плазмолеммы, поэтому сокращение выражается в укорочении клетки, которая приобретает складчатую форму, тогда как в состоянии покоя клетка вытянута. При возникновении нервного импульса, распространяющегося по плазмолемме миоцита, происходит повышение уровня внутриклеточного Са2+, который поступает в цитоплазму из кавеол, отшнуровывающихся в цитоплазму в виде пузырьков. Высвобождение ионов кальция приводит к каскаду реакций, в результате которого происходит полимеризация миозина и образование перекрестных связей миозина вдоль актиновых филаментов по мере развития мышечного сокращения. Расслабление мышцы возникает при восстановлении концентрации исходного уровня Са2+ внутри клетки путем его перемещения внутрь саркоплазматической сети. При этом образовавшиеся в присутствии ионов кальция связи между актином и миозином нарушаются, акто-миозиновый комплекс распадается, гладкий миоцит расслабляется.

Гладкие миоциты синтезируют протеогликаны, гликопротеиды, проколлаген, проэластин, из которых формируются коллагеновые и эластические волокна и основное вещество межклеточного матрикса.

Взаимодействие миоцитов осуществляется с помощью цитоплазматических мостиков, взаимных впячиваний, нексусов, десмосом или простых участков мембранных контактов клеточных поверхностей.

Регенерация гладкой мышечной ткани

Гладкая мышечная ткань висцерального и сосудистого видов обладает значительной чувствительностью к воздействию экстремальных факторов.

В активированных миоцитах возрастает уровень биосинтетических процессов, морфологическим выражением которых являются синтез сократительных белков, укрупнение и гиперхроматоз ядра, гипертрофия ядрышка, возрастание показателей ядерно-цитоплазменного отношения, увеличение количества свободных рибосом и полисом, активация ферментов, аэробного и анаэробного фосфорилирования, мембранного транспорта. Клеточная регенерация осуществляется как за счет дифференцированных клеток, обладающих способностью вступать в митотический цикл, так и за счет активизации камбиальных элементов (миоцитов малого объема).

При действии ряда повреждающих факторов отмечается фенотипическая трансформация контрактильных миоцитов в секреторные. Данная трансформация часто наблюдается при повреждении интимы сосудов, формировании ее гиперплазии при развитии атеросклероза.

Что покрывает гладкая мышечная ткань. Смотреть фото Что покрывает гладкая мышечная ткань. Смотреть картинку Что покрывает гладкая мышечная ткань. Картинка про Что покрывает гладкая мышечная ткань. Фото Что покрывает гладкая мышечная тканьГладкая мышечная ткань в поперечном (наверху) и продольном (внизу) разрезах. Обратите внимание на центрально расположенные ядра. Во многих клетках ядра не попали в срез.
Окраска: парарозанилин—толуидиновый синий. Среднее увеличение.

Источник

Мышечная ткань

Мы́шечными тка́нями (лат. textus muscularis ) называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Состоят из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением. Они обеспечивают перемещения в пространстве организма в целом, его движение органов внутри организма (сердце, язык, кишечник и др.) и состоят из мышечных волокон. Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией.

Основные морфологические признаки элементов мышечных тканей: удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов — специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Специальные сократительные органеллы — миофиламенты или миофибриллы обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков — актина и миозина — при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией.Запас источников энергии образуют гликоген и липиды. Миоглобин — белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко падает).

Содержание

Свойства мышечной ткани

Виды мышечной ткани

Гладкая мышечная ткань

Состоит из одноядерных клеток — миоцитов веретеновидной формы длиной 20—500 мкм. Их цитоплазма в световом микроскопе выглядит однородно, без поперечной исчерченности. Эта мышечная ткань обладает особыми свойствами: она медленно сокращается и расслабляется, обладает автоматией, является непроизвольной (то есть ее деятельность не управляется по воле человека). Входит в состав стенок внутренних органов: кровеносных и лимфатических сосудов, мочевыводящих путей, пищеварительного тракта (сокращение стенок желудка и кишечника).

Поперечно-полосатая скелетная мышечная ткань

Состоит из миоцитов, имеющих большую длину (до нескольких сантиметров) и диаметр 50—100 мкм; эти клетки многоядерные, содержат до 100 и более ядер; в световом микроскопе цитоплазма выглядит как чередование тёмных и светлых полосок. Свойствами этой мышечной ткани является высокая скорость сокращения, расслабления и произвольность (то есть её деятельность управляется по воле человека). Эта мышечная ткань входит в состав скелетных мышц, а также стенки глотки, верхней части пищевода, ею образован язык, глазодвигательные мышцы. Волокна длиной от 10 до 12 см.

Поперечно-полосатая сердечная мышечная ткань

Состоит из 1 или 2-х ядерных кардиомиоцитов, имеющих поперечную исчерченность цитоплазмы(по периферии цитолеммы). Кардиомиоциты разветвлены и образуют между собой соединения — вставочные диски, в которых объединяется их цитоплазма.Существует также другой межклеточный контакт- аностамозы(впячивание цитолеммы одной клетки в цитолемму другой) Этот вид мышечной ткани образует миокард сердца. Развивается из миоэпикардальной пластинки (висцерального листка спланхнотома шеи зародыша) Особым свойством этой ткани является автоматия — способность ритмично сокращаться и расслабляться под действием возбуждения, возникающего в самих клетках(типичные кардиомиоциты). Эта ткань является непроизвольной(атипичные кардиомиоциты). Существует 3-й вид кардиомиоцитов- секреторные кардиомиоциты (в них нет фибрилл) Они синтезируют гормон тропонин, понижающий АД и расширяющий стенки кровеносных сосудов.

Функции мышечной ткани

Что покрывает гладкая мышечная ткань. Смотреть фото Что покрывает гладкая мышечная ткань. Смотреть картинку Что покрывает гладкая мышечная ткань. Картинка про Что покрывает гладкая мышечная ткань. Фото Что покрывает гладкая мышечная ткань

Примечания

Что покрывает гладкая мышечная ткань. Смотреть фото Что покрывает гладкая мышечная ткань. Смотреть картинку Что покрывает гладкая мышечная ткань. Картинка про Что покрывает гладкая мышечная ткань. Фото Что покрывает гладкая мышечная ткань Биологические ткани
Клетка
ЖивотныеЭпителиальная • Соединительная (костная, хрящевая, жировая, кровь и лимфа) • Нервная • Мышечная • Покровная
РастенияОбразовательная (меристема) • Покровная • Механическая • Адсорбционная • Ассимиляционная • Проводящая • Секреторная • Аэренхима
См. такжеГистология • Межклеточное вещество
Орган
Что покрывает гладкая мышечная ткань. Смотреть фото Что покрывает гладкая мышечная ткань. Смотреть картинку Что покрывает гладкая мышечная ткань. Картинка про Что покрывает гладкая мышечная ткань. Фото Что покрывает гладкая мышечная ткань

Что покрывает гладкая мышечная ткань. Смотреть фото Что покрывает гладкая мышечная ткань. Смотреть картинку Что покрывает гладкая мышечная ткань. Картинка про Что покрывает гладкая мышечная ткань. Фото Что покрывает гладкая мышечная ткань

Полезное

Смотреть что такое «Мышечная ткань» в других словарях:

МЫШЕЧНАЯ ТКАНЬ — (testus muscularis), составляет осн. массу мышц и осуществляет их сократит, функцию. Выделяют поперечнополосатую М. т. скелетные и сердечная мышцы (иногда сердечную М. т. выделяют особо), гладкую и с двойной косой исчерченностью. У позвоночных… … Биологический энциклопедический словарь

мышечная ткань — ▲ ткань животного организма ↑ мышца мышечная ткань развивается из мезодермы (поперечнополосатая #) и мезенхимы (гладкая #). саркоплазма. мышца. миокард, миокардий. ↓ миобласты. миофибриллы. МЫШЕЧНАЯ СИСТЕМА, сердце … Идеографический словарь русского языка

МЫШЕЧНАЯ ТКАНЬ — составляет основную массу мышц и осуществляет их сократительную функцию. В зависимости от строения мышечной ткани различают сердечную, гладкие и поперечнополостные мышцы … Большой Энциклопедический словарь

мышечная ткань — составляет основную массу мышц и осуществляет их сократительную функцию. В зависимости от строения мышечной ткани различают сердечную, гладкие и поперечнополосатые мышцы. * * * МЫШЕЧНАЯ ТКАНЬ МЫШЕЧНАЯ ТКАНЬ, составляет основную массу мышц и… … Энциклопедический словарь

мышечная ткань — raumeninis audinys statusas T sritis Kūno kultūra ir sportas apibrėžtis Audinys, atliekantis judėjimo funkciją. Ši funkcija yra susijusi su specifinėmis raumenų ląstelių siūlo pavidalo struktūromis – miofibrilėmis. Pastarąsias sudarantys baltymai … Sporto terminų žodynas

Мышечная ткань — ткань, составляющая основную массу мышц и осуществляющая их сократительную функцию. Различают поперечнополосатую М. т. (скелетные и сердечная мышцы), гладкую и с двойной косой исчерченностью. Почти вся скелетная М. т. у позвоночных… … Большая советская энциклопедия

МЫШЕЧНАЯ ТКАНЬ — Мышечные ткани. Мышечные ткани. I. Гладкие мышечные клетки в продольном и поперечном срезе. II. Продольный срез сердечных мышечных волокон: 1 — главное мышечное волокно; 2 — вставочный диск; 3 — анастомозирующее волокно; 4 —… … Ветеринарный энциклопедический словарь

МЫШЕЧНАЯ ТКАНЬ — составляет осн. массу мышц и осуществляет их сократит. функцию. В зависимости от строения М. т. различают сердечную, гладкие и поперечнополосатые мышцы … Естествознание. Энциклопедический словарь

МЫШЕЧНАЯ ТКАНЬ — основная составляющая массу мышц и от дельных органов, осуществляющая их сократительную функцию. Выделяют поперечно полосатую М. т. (скелетные и сердечная мышцы), гладкую и с двойной косой исчерченностью (см. Мышц виды) … Психомоторика: cловарь-справочник

Скелетная мышечная ткань — Схема скелетной мышцы в разрезе … Википедия

Источник

Что покрывает гладкая мышечная ткань

Тема 7. МЫШЕЧНАЯ ТКАНЬ

1. Классификация и функции мышечной ткани.

2. Поперечно-полосатая мышечная ткань.

4. Гладкая мышечная ткань.

5. Гистогенез и регенерация мышечной ткани.

1. Классификация и функции мышечной ткани

Уникальная способность животных организмов к активному движению осуществляется благодаря мышечной ткани. Сократимость – это свойство только мышечной ткани в нашем организме. Кроме сократимости она обладает возбудимостью и проводимостью. Имея разное происхождение и строение, мышечные ткани объединяет способность к сокращению. Сократительный аппарат занимает значительную часть в цитоплазме, в его составе присутствуют актиновые и миозиновые филаменты из сократительных белков – актин и миозин, которые формируют органеллы специального значения–миофибриллы.

По морфофункциональному признаку различают:

· Сердечная мышечная ткань входит в состав мышечной стенки сердца. Иннервируется вегетативными нервами, является непроизвольной.

В зависимости от источников развития выделяют пять типов мышечной ткани:

1. Мезенхимного происхождения (гладкая мышечная ткань).

2. Из кожной эктодермы и прехордальной пластинки – миоэпителиальные клетки (например, в потовых, слюнных железах).

3. Нейральное происхождение (из нервной трубки) – мышцы суживающие и расширяющие зрачок.

4. Целомическое происхождение ( миоэпикардиальная пластинка) – сердечная мышечная ткань.

5. Из миотомов мезодермы – исчерченная мышечная ткань.

Функции мышечной ткани:

1. Движение организма, его перемещение в пространстве.

2. Обеспечение физиологических процессов дыхания, кровообращения, пищеварения, внешней секреции.

3. Участие в теплорегуляции.

4. Запасающая (депо гликогена).

2. Поперечно-полосатая мышечная ткань

В мышечном волокне различают мембранный аппарат, фибриллярный (сократительный) аппарат, трофический аппарат (ядро, саркоплазма, цитоплазматические органеллы).

Что покрывает гладкая мышечная ткань. Смотреть фото Что покрывает гладкая мышечная ткань. Смотреть картинку Что покрывает гладкая мышечная ткань. Картинка про Что покрывает гладкая мышечная ткань. Фото Что покрывает гладкая мышечная ткань

Структурной единицей миофибриллы является саркомер (S) – это пучок миофиламентов заключенный между двумя Z линиями ( рис.45 ). Принимая во внимание вышеуказанные обозначения можно структуру саркомера записать в виде формулы:

Тяжелые и легкие цепи в молекуле миозина можно разделить обработкой мочевиной, гуанидинхлоридом и др. При мягкой обработке можно отделить только легкие цепи. Миозину свойственна АТФ- азная активность – высвобождающаяся энергия используется для мышечного сокращения.

2. Появлению АТФ- азной активности миозина.

Что покрывает гладкая мышечная ткань. Смотреть фото Что покрывает гладкая мышечная ткань. Смотреть картинку Что покрывает гладкая мышечная ткань. Картинка про Что покрывает гладкая мышечная ткань. Фото Что покрывает гладкая мышечная ткань

Все это вместе взятое приводит к тому, что миозиновые головки «шагают» по актину, образуя в ходе перемещения новые связи актина и миозина, сближая две Z-линии. При сокращении уменьшаются только светлые диски.

Чувствительная иннервация (нервно-мышечные веретена). Интрафузальные мышечные волокна вместе с чувствительными нервными окончаниями формируют нервно-мышечные веретена, являющиеся рецепторами скелетной мышцы. Снаружи сформирована капсула веретена. При сокращении поперечно-полосатых (исчерченных) мышечных волокон изменяется натяжение соединительно-тканной капсулы веретена и соответственно изменяется тонус интрафузальных (расположенных под капсулой) мышечных волокон. Формируется нервный импульс.

По характеру сокращения мышечные волокона делят на фазные и тонические. Фазные способны осуществлять быстрые сокращения, но не могут длительно удерживать достигнутый уровень укорочения. Тонические –о беспечивают поддержание статического напряжения или тонуса.

* при анаэробном типе метаболизма из 1 молекулы глюкозы образуется 2 молекулы АТФ и молочная кислота.

* при аэробном окислении из 1 молекулы глюкозы образуется 38 молекул АТФ и конечные продукты метаболизма: СО 2 и Н2О. Идентификация мышечных волокон основана на выявлении активности фермента сукцинатдегидрогеназы (СДГ), которая является маркером для митохондрий и цикла Кребса. Активность этого фермента свидетельствует о напряженности энергетического метаболизма. Выделяют мышечные волокна А-типа (гликолитические) с низкой активностью СДГ, С-тип ( оксидативные ) с высокой активностью СДГ. Мышечные волокна В-типа занимают промежуточное положение. Переход мышечных волоко от А-типа в С-тип маркирует изменения от анаеробного гликолиза к метаболизму, зависящему от кислорода.

Существует много и других классификаций.

3. Сердечная мышечная ткань

Она находится в мышечной оболочке сердца (миокард) и в устьях связанных с ним крупных сосудов. Имеет клеточный тип строения и основным функциональным свойством служит способность к спонтанным ритмическим сокращениям.

Что покрывает гладкая мышечная ткань. Смотреть фото Что покрывает гладкая мышечная ткань. Смотреть картинку Что покрывает гладкая мышечная ткань. Картинка про Что покрывает гладкая мышечная ткань. Фото Что покрывает гладкая мышечная ткань

Рис. 47. Миокард (А – продольный, Б – поперечный разрез).

Проводящие (атипичные) кардиомиоциты – среди них различают:

1. Водители ритма – это клетки небольших размеров, в саркоплазме мало гликогена, мало миофибрилл и они расположены по периферии. Клетки имеют хорошее кровоснабжение и иннервацию. Они воспринимают сигналы от нервных окончаний и способны автоматически генерировать сигналы обеспечивающие ритмические сокращения сердца.

2. Проводящие (переходные) кардиомиоциты проводят возбуждение от водителя ритма. Образуют длинные волокна. Миофибриллы в небольшом количестве, имеют спиральный ход, мелкие митохондрии, немного гликогена.

3. Волокна Пуркинье – являются самыми крупными клетками в мышечной ткани сердца с неупорядоченным расположением миофибрилл, множеством мелких митохондрий, много гликогена, нет Т-трубочек, клетки связаны между собой десмосомами и щелевидными контактами.

Секреторные кардиомиоциты – находятся в, основном, в предсердиях, преимущественно в правом. Характеризуются отростчатой формой и слабым развитием сократительного аппарата. В саркоплазме, вблизи полюсов ядра-секреторные гранулы, содержащие атриопептин (гормон, регулирующий артериальное давление). Гормон вызывает потерю натрия и воды с мочой, расширение сосудов, снижение давления, угнетение секреции альдостерона, кортизола, вазопрессина.

4. Гладкая мышечная ткань

Миофиламенты расположены вдоль продольной оси. В ГМК актиновые и миозиновые филаменты не формируют миофибрилл. Актиновые нити (тонкие филаменты ) ориентированы по продольной оси ГМК. По количеству их больше и они прикрепляются к плотным тельцам, которые являются специальными сшивающими белками. Рядом с актиновыми нитями располагаются мономеры миозина ( микромиозин ). Обладая разной длиной они, значительно короче тонких нитей.

Сокращение гладких мышечных клеток осуществляется при взаимодействии актиновых филаментов и миозина. Сигнал идущий по нервным волокнам обуславливает выделение медиатора, что изменяет состояние сарколеммы. Она образует колбовидные впячивания ( кавеолы ), где концентрируются ионы кальция. Сокращение ГМК индуцируется притоком ионов кальция в саркоплазму ( кавеолы отшнуровываются и вместе с ионами кальция попадают в саркоплазму). Это приводит к полимеризации миозина и взаимодействию его с актином. Актиновые нити и плотные тельца сближаются, усилие передается на сарколемму и ГМК укорачивается. Миозин ГМК способен взаимодействовать с актином только после фосфорилирования его легких цепей особым ферментом– киназой легких цепей. После прекращения сигнала ионы кальция покидают кавеолы ; миозин деполяризуется, теряет сродство к актину. В результате комплексы миофиламентов распадаются; сокращение прекращается.

Мионейральные клетки развиваются из клеток наружного слоя глазного бокала и образуют мышцу, суживающую зрачок и мышцу, расширяющую зрачок. По строению первая мышца сходна с ГМК мезенхимного происхождения. Мышца, расширяющая зрачок образована отростками клеток, располагающимися радиально, а ядросодержащая часть клетки находится между пигментным эпителием и стромой радужки.

Миофибробласты относятся к рыхлой соединительной ткани и представляют собой видоизмененные фибробласты. Они проявляют свойства как фибробластов, так и ГМК (обладают выраженными сократительными свойствами). Как вариант этих клеток можно рассматривать миоидные клетки в составе стенки извитого семенного канальца яичка и наружного слоя теки фолликула яичника. При заживлении раны часть фибробластов синтезирует гладкомышечные актины и миозины.

5. Гистогенез и регенерация мышечной ткани

В активированных миоцитах увеличивается синтез сократительных белков, происходит укрупнение и гиперхроматоз ядра, гипертрофия ядрышка, увеличивается количество свободных рибосом и полисом, наблюдается активация ферментов. Клеточная регенерация осуществляется как за счет активации миоцитов малого объема (камбиальных элементов), так и за счет дифференцированных клеток (обладающих способностью к митозу).

При функциональной нагрузке (беременности) или при патологии наблюдается увеличение массы гладкомышечной ткани за счет гипертрофии (увеличения размеров) или за счет гиперплазии (увеличения количества) гладких миоцитов

Мышечная ткань эпидермального происхождения Миоэпителиальные клетки развиваются из эпидермального зачатка. Они встречаются в потовых, молочных, слюнных и слезных железах и имеют общих предшественников с их секреторными клетками. Миоэпителиальные клетки непосредственно прилежат к собственно эпителиальным и имеют общую с ними базальную мембрану. При регенерации те и другие клетки тоже восстанавливаются из общих малодифференцированных предшественников. Большинство миоэпителиальных клеток имеют звездчатую форму. Эти клетки нередко называют корзинчатыми : их отростки охватывают концевые отделы и мелкие протоки желез. В теле клетки располагаются ядро и органеллы общего значения, а в отростках – сократительный аппарат, организованный, как и в клетках мышечной ткани мезенхимного типа.

Физиологическая регенерация скелетной мышечной ткани проявляется в форме гипертрофии мышечных волокон, что выражается в увеличении их толщины и даже длины, увеличение числа органелл, главным образом миофибрилл, а также нарастании числа ядер, что, в конечном счете, проявляется увеличением функциональной способности мышечного волокна. Радиоизотопным методом установлено, что увеличение числа ядер в мышечных волокнах в условиях гипертрофии достигается за счет деления клеток миосателлитов и последующего вхождения в миосимпласт дочерних клеток.

При определенных видах мышечной тренировки может формироваться преимущественно красный тип мышечных волокон (у стайеров) или белый тип мышечных волокон (у спринтеров). Возрастная гипертрофия мышечных волокон интенсивно проявляется с началом двигательной активности организма (1-2 года), что обусловлено, прежде всего усилением нервной стимуляции. В старческом возрасте, а также в условиях малой мышечной нагрузки наступает атрофия специальных и общих органелл, истончение мышечных волокон и снижение их функциональной способности.

Советским ученым А. Н. Студитским доказана возможность аутотрансплантации скелетной мышечной ткани и даже целых мышц при соблюдении определенных условий:

Регенерация сердечной мышечной ткани. В сердечной мышечной ткани отсутствуют камбиальные клетки, а сами кардиомиоциты утрачивают способность делиться к моменту рождения ребенка или в первые месяцы жизни. Поэтому при регенерации ткани не образуются новые кардиомиоциты и волокна. Наблюдается гипертрофия (увеличение объема) сохранившихся клеток.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *