Что получается при делении чисел
Деление
В этом разделе познакомимся с делением и узнаем, что деление – это математическая операция, обратная умножению.
Умножение – это последовательное сложение чисел, а деление – это последовательное вычитание чисел.
Как ёжикам поделить между собой яблоки поровну?
Нужно воспользоваться действием деления и узнать, сколько раз по 3 содержится в 6.
Любой пример на умножение можно представить двумя примерами на деление.
Например, для выражения 6 • 4 = 24 есть два обратных выражения:
24 : 4 = 6 — нужно из 24 вычесть число 4 ровно 6 раз.
24 : 6 = 4 — нужно из 24 вычесть число 6 ровно 4 раз.
Числа при делении
При делении, как и при другом математическом действии, каждое число имеет свое название.
Число, которое делят, называется делимое.
Число, на которое делят, называется делитель.
Результат деления называется частное.
Чтение числовых выражений
Этот пример можно прочитать по-разному.
Деление на 1
Деление на 0
Деление числа само на себя
Связь деления и умножения
Чётные и нечётные числа
Числа, которые делятся на 2 без остатка, называются чётными, а числа, которые не делятся на 2 без остатка, называются нечётными.
Чётные: 6, 22 44, 60, 74, 82, 96
Нечётные: 7, 13, 21, 37, 45, 97
В несколько раз меньше
Для примера решим задачу:
В магазине было 8 котят, а лисичек в 4 раза меньше. Сколько было лисичек?
Значит, чтобы узнать, сколько было лисичек, нужно 8 : 4 = 2 (л.)
Во сколько раз больше? Во сколько раз меньше?
Например, решим задачу: В магазине было 8 котят и 2 лисички. Во сколько раз котят было больше, чем лисичек? Во сколько раз лисичек было меньше, чем котят?
Чтобы ответить на эти вопросы, нужно узнать, сколько раз по 2 содержится в 8?
Значит, котят в 4 раза больше, чем лисичек, а лисичек в 4 раза меньше, чем котят.
Поделись с друзьями в социальных сетях:
Деление натуральных чисел
Вы уже знакомы с общими понятиями о делении и о том как делить в столбик, рассмотрим более подробно деление натуральных чисел и его свойства.
Рассмотрим задачу:
У Вани 7 кроликов, он собрал для них 28 яблок. Сколько яблок досталось каждому кролику?
Действие, с помощью которого по произведению и одному из множителей находят другой множитель, называют делением. |
Данное действие записывают так: ,
или
, где:
Частное показывает во сколько раз делимое больше делителя, то есть в нашем примере: 28 больше 7 в 4 раза. Поэтому, если в задаче звучит вопрос «во сколько?», для её решения мы используем деление. При этом не всегда возможно одно число поделить на другое, тогда возникает необходимость деления с остатком.
Из вышесказанного мы можем сделать вывод:
Пример: , следовательно,
, то есть
.
Пример: , по смыслу деления
— это произведение 4 и 9, следовательно,
, то есть
.
Свойства деления
Распределительные свойства:
1. Деление суммы на число:
2. Деление разности на число:
3. Деление произведения на число:
4. Деление числа на произведение:
Действия с единицей и нулем
1. Деление числа на единицу: то есть, при делении числа на единицу получается само число
2. Деление числа на себя: , то есть при делении числа, не равного нулю, на само себя получается единица.
3. Деление нуля на число: , то есть при делении нуля на любое число, не равное нулю, получаем ноль.
НА НОЛЬ ДЕЛИТЬ НЕЛЬЗЯ!
Свойства деления
Распределительные свойства :
1. Деление суммы на число:
а) Мы можем сложить яблоки, которые нашли Маша и Ваня, а потом разделить полученное число на количество кроликов, то есть:
б) Мы можем разделить яблоки, которые собрала Маша, затем разделить яблоки, которые собрал Ваня, а результат сложить:
Мы видим, что в обоих случаях получается один и тот же результат, и можно записать, что: (9+15):3=9:3+15:3.
Вывод: Чтобы разделить сумму на какое-нибудь число, можно разделить на это число каждое слагаемое отдельно (если это возможно) и полученные частные сложить.
2. Деление разности на число:
Всего трем братьям папа дал 150 рублей. На 72 рубля они купили сестре цветы на день рождения. Сколько рублей осталось у каждого брата?
а) Мы можем из общей суммы вычесть то, что братья потратили, а затем поделить сдачу:
б) Мы можем найти, сколько получил каждый брат, затем посчитать, сколько потрачено каждым из них, а затем вычесть из полученной суммы денег потраченную:
Вывод: Чтобы разделить разность на какое-нибудь число, можно разделить на это число уменьшаемое и вычитаемое отдельно (если это возможно) и из первого частного вычесть второе.
3. Деление произведения на число:
В зооуголке в саду 3 кролика. 12 детей принесли по 6 яблок для кормления питомцев. Сколько яблок досталось каждому кролику?
а) Сначала можем найти общее количество яблок, которые принесли дети, а затем поделить на число кроликов:
б) Мы можем найти сколько детей принесли яблоки одному кролику, а затем умножить на количество принесенных яблок:
б) Мы можем найти по сколько яблок принес 1 ребенок для 1 кролика, а затем умножить на количество детей:
Мы видим, что в всех случаях получается один и тот же результат, и можно записать, что: (12 · 6) : 3 = (12 : 3) · 6 = (6 : 3) ·12.
Вывод: Чтобы разделить произведение двух множителей на число, можно разделить на это число любой из множителей (если деление выполнимо) и частное умножить на второй множитель.
4. Деление числа на произведение:
В 4 клетках сидят по 3 кролика. Ваня принес 48 яблок. Сколько яблок досталось каждому кролику?
а) Мы можем найти сколько кроликов всего, а потом поделить яблоки на полученное число:
б) Мы можем найти сколько яблок положат в каждую клетку, а затем, сколько получит яблок каждый кролик:
Если мы рассадим наших кроликов по 4 в три клетки, решая задачу аналогично получим:
Мы видим, что в всех случаях получается один и тот же результат, и можно записать, что: 48 : (4 · 3) = (48 : 4) : 3 = (48 : 3) : 4
Вывод: Чтобы разделить число на произведение двух множителей, можно разделить это число сначала на один из множителей, а затем на второй.
Действия с единицей и нулем
1. Деление числа на единицу:
У Вани один кролик. Он принёс 3 яблока. Сколько яблок достанется кролику?
Будем рассуждать, у Вани всего один кролик, значит все яблоки достанутся ему:
2. Деление числа на себя:
Из свойств умножения мы знаем, что: , а мы знаем, что по смыслу деления можно записать, что:
, то есть при делении числа, не равного нулю, на само себя получается единица.
3. Деление нуля на число:
Рассуждая аналогично пункту 2 получаем: , то есть при делении ноля на любое число, не равное нулю, получаем ноль.
Обратите внимание, что НА НОЛЬ ДЕЛИТЬ НЕЛЬЗЯ!
Это легко объяснить следующими рассуждениями: пусть мы взяли карандашей, попробуем разложить их в 0 коробок, и предположим, что получилось по
карандашей в каждой коробке:
, из смысла деления
, в то же время мы знаем из свойств умножения, что:
, то есть получаем, что
, а это противоречит условию задачи, следовательно делаем вывод, что на ноль делить нельзя.
Поделись с друзьями в социальных сетях:
Математика. 2 класс
Конспект урока
Математика, 2 класс
Урок № 55. Название чисел при делении
Перечень вопросов, рассматриваемых в теме:
1. Как называются числа при делении?
2. Как называется числовое выражение со знаком деление?
Обязательная литература и дополнительная литература:
Теоретический материал для самостоятельного изучения
Запишем равенство, используя необходимое арифметическое действие:
10 яблок разложили на две тарелки поровну.
9 конфет раздали трём детям поровну.
8 тетрадей раздали четырём ученикам поровну.
Для того, чтобы выполнит задание, нам понадобилось действие деление.
Вы уже знаете, как называются числа при сложении и вычитании, недавно вы познакомились с названиями чисел при умножении.
Вы умеете называть выражения со знаками «плюс», «минус», со знаком умножения. Сегодня вы узнаете, как называются числа при делении. Выражение со знаком деления тоже имеет своё название. Хотите узнать? Вперёд!
Числа при делении имеют свои названия.
8 листьев раздали детям, по 2 листа каждому.
4 человека получили листья.
Число, которое делят, называется делимым. 8 – это делимое. Число, на которое делят делимое, называется делитель. 2 – это делитель Результат действия деления называется частным. 4 – это частное. Выражение 8 разделить на 2 тоже называется частным.
Компоненты деления: делимое, делитель, частное.
Найдите частное, если делимое – 6, делитель – 3.
Найдите частное чисел 12 и 6. Проверьте: 12 : 6 = 2
Решим задачу: 12 клубничек раздали 4 детям поровну. По сколько клубничек получил каждый ребёнок?
Для решения задачи выберем действие деление, так как надо узнать, сколько раз по 4 содержится в числе 12.
Ответ: по 3 клубнички получил каждый ребёнок.
Вспомним название чисел при делении. 12 – делимое, 4 – делитель. 3 – частное. 12 : 4 – это частное.
Вывод: компоненты действия деление – делимое, делитель, результат деления – частное.
Ответим на вопросы, поставленные в начале урока.
Число, которое делят, называется делимое.
Число, на которое делят делимое, называется делитель.
Результат деления – частное.
Числа, которые соединены знаком деления, тоже называются частное.
Выполним несколько тренировочных заданий.
1. По рисунку составьте задачи на деление. Запишите решение. Назовите компоненты действия деление.
а) 15 яблок разложили в 3 вазы, в каждую вазу поровну. Сколько яблок положили в одну вазу?
Проверьте: 15 : 3 = 5 (яб.).
15 – делимое. 3 – делитель. 5 – частное. Выражение 15:3 – частное.
б) 15 яблок разложили в вазы, по 5 штук в каждую. Сколько ваз заняты яблоками?
15 – делимое. 5 – делитель. 3 – частное. Выражение 15:5 – частное.
2. Запишите выражение и найдите их значения:
Деление натуральных чисел: правила, примеры, решения
В этой статье мы рассмотрим правила и алгоритмы деления натуральных чисел. Сразу отметим, что здесь мы смотрим только на деление нацело, то есть без остатка. О делении натуральных чисел с остатком читайте в нашем отдельном материале.
Для каждого случая приведем и подробно рассмотрим примеры. В конце статьи покажем, как проводить проверку результата деления.
Связь деления с умножением
Чтобы проследить связь между делением и умножением, вспомним, что деление представляется, как разбиение исходного делимого множества на несколько одинаковых множеств. Умножение связано с объединением нескольких одинаковых множеств в одно.
Обратный процесс разбиения полученного общего множества на b множеств по с предметов в каждом соответствует делению:
На основе сказанного можно перейти к следующему утверждению:
Пользуясь переместительным свойством умножения, можно записать:
Подытожим все изложенное выше и дадим определение деления натуральных чисел.
Деление натуральных чисел
Это определение станет базой, на основе которой мы будем строить правила и методы деления натуральных чисел.
Деление методом последовательного вычитания
Иными словами данную задачу можно сформулировать так: имеется 12 предметов (например, апельсинов), и их нужно разделить на равные группы по 4 предмета (разложить в коробки по 4 штуки). Сколько будет таких групп или коробок по четыре апельсина в каждой?
Шаг за шагом будем отнимать от исходного количества по 4 апельсина и формировать группы по 4 до того момента, пока апельсины не закончатся. Количество шагов, которые нам придется сделать, и будет ответом на изначальный вопрос.
Работая с числами, не нужно каждый раз проводить аналогию с предметами. Что мы делали с делимым и делителем? Последовательно вычитали делитель из делимого, пока не получили нуль в остатке.
При делении методом последовательного вычитания количество операций вычитания до получения нулевого остатка и есть частное от деления.
Для закрепления рассмотрим еще один, более сложный пример.
Пример 1. Деление последовательным вычитанием
Вычислим результат деления числа 108 на 27 методом последовательного вычитания.
Более действий не требуется. Мы получили ответ:
Отметим, что данный метод удобен только в случаях, когда необходимое количество последовательных вычитаний невелико. В остальных случаях целесообразно применять правила деления, которые мы рассмотрим ниже.
Деление равных натуральных чисел
Согласно свойствам натуральных чисел, сформулируем правило, как делить равные натуральные числа.
Деление равных натуральных чисел
Частное от деления натурального числа на равное ему натуральное число равно единице!
Деление на единицу
Основываясь на свойствах натуральных чисел, можно также сформулировать правило деление натурального числа на единицу.
Деление натурального числа на единицу
Частное от деления любого натурального числа на единицу равно самому делимому числу.
Деление с помощью таблицы умножения
С помощью таблицы умножения можно проводить деление любого числа на желтом фоне на любое однозначное натуральное число. Покажем, как это делать. Есть два способа, применение которых мы будем рассматривать на примерах.
Настоятельно рекомендуем выучить таблицу умножения!
Деление на 10, 100, 1000 и т.д.
Деление на 10, 100, 1000 и т.д.
Отбрасывается столько нулей, сколько из есть в записи делителя!
Представление делимого в виде произведения
При делении натуральных чисел не стоит забывать о свойстве деления произведения двух чисел на натуральное число. Иногда делимое можно представить в виде произведения, один из множителей в котором делится на делитель.
Рассмотрим типичные случаи.
Пример 2. Представление делимого в виде произведения
Имеем: 30 ÷ 3 = 3 · 10 ÷ 3
Воспользовавшись свойством деления произведения двух чисел, получаем:
3 · 10 ÷ 3 = 3 ÷ 3 · 10 = 1 · 10 = 10
Приведем еще несколько аналогичных примеров.
Пример 3. Представление делимого в виде произведения
7200 ÷ 72 = 72 · 100 ÷ 72 = 72 ÷ 72 ÷ 100 = 100
1600000 = 160 · 10000
1600000 ÷ 160 = 160 · 10000 ÷ 160 = 160 ÷ 160 · 10000 = 10000
В более сложных примерах удобно пользоваться таблицей умножения. Проиллюстрируем это.
Пример 5. Представление делимого в виде произведения
Теперь закончим деление:
5400 ÷ 9 = 54 · 100 ÷ 9 = 54 ÷ 9 · 100 = 6 · 100 = 600
Для закрепления данного материала рассмотрим еще один пример, уже без подробных словесных пояснений.
Пример 6. Представление делимого в виде произведения
120 ÷ 4 = 12 · 10 ÷ 4 = 12 ÷ 4 · 10 = 3 · 10 = 30
Деление натуральных чисел, оканчивающихся на нуль
Как всегда, поясним это на примерах.
Пример 7. Деление натуральных чисел, оканчивающихся на 0
Используя свойство деления натурального числа на произведение, можно записать:
Деление на 10 мы уже разобрали в предыдущем пункте.
490 ÷ 10 ÷ 7 = 49 ÷ 7 = 7
Для закрепления разберем еще один, более сложный пример.
Пример 8. Деление натуральных чисел, оканчивающихся на 0
Возьмем числа 54000 и 5400 и разделим их.
Представим 5400 в виде 54 · 100 и запишем:
Теперь делимое 540 представляем в виде 54 · 10 и записываем:
540 ÷ 54 = 54 · 10 ÷ 54 = 54 ÷ 54 · 10 = 10
Подведем итог по изложенному в данном пункте.
Если в записях делимого и делителя справа присутствуют нули, то нужно избавиться от одинакового количества нулей как в делимом, так и в делителе. После этого выполнить деление получившихся чисел.
Метод подбора частного
Прежде чем рассматривать этот способ деления, введем некоторые условия.
Пример 9. Подбор частного
Начнем подбор частного.
27 · 1 = 27 27 · 2 = 54 27 · 3 = 81 27 · 4 = 108
Бинго! Частное найдено методом подбора:
Отметим, что в случаях, когда b · 10 > a частное также удобно находить методом последовательного вычитания.
Представление делимого в виде суммы
Результаты делений в скобках известны нам из проведенных ранее действий.
Рассмотрим еще несколько примеров, уже не комментируя каждое действие столь детально.
Пример 10. Деление натуральных чисел
2. Справа у делителя приписываем один нуль.
Равенство 60 ÷ 2 = 30 ещё пригодится нам в будущем.
Теперь находим частное:
31 · 10 = 310 ; 31 · 20 = 620 ; 31 · 30 = 930 ; 31 · 40 = 1240
31 · 1 = 31 ; 31 · 2 = 62 ; 31 · 3 = 93 ; 31 · 4 = 124 ; 31 · 5 = 155 ; 31 · 6 = 186 ; 31 · 7 = 217 ; 31 · 8 = 248
Постепенно увеличиваем сложность примеров.
Пример 12. Деление натуральных чисел
В данном случае описанный выше алгоритм нужно будет применить три раза. Не будем приводить все выкладки, просто укажем, в виде каких слагаемых будет представлен делитель. Вы можете проверить себя, и провести вычисления самостоятельно.
Казалось бы, мы рассмотрели практически все возможные способы деления натуральных чисел. На этом, тему можно считать закрытой. Однако, есть способ, который в ряде случаев позволяет провести деление быстрее и рациональнее.
Рассмотрим его напоследок.
Представление делимого в виде разности натуральных чисел
Иногда делимое проще и удобнее представлять в виде разности, а не суммы. Это может значительно ускорить и облегчить процесс деления. Как именно? Покажем на примере.
Пример 13. Деление натуральных чисел
Если воспользоваться алгоритмом из предыдущего пункта, мы получим в результате:
Результат тот же, но действия объективно легче и проще.
Решим еще один пример тем же методом. Отметим, что важно уметь правильно заметить, какую манипуляцию сделать с числами, чтобы провести деление легко. Скажем даже, что в этом присутствует некоторый элемент искусства.
Пример 14. Деление натуральных чисел
490 ÷ 7 = 70 7 ÷ 7 = 1
Проверка результата деления
Проверка никогда не бывает лишней, особенно, если мы делили большие числа. Как проверять, правильно ли выполнено деление натуральных чисел? При помощи умножения!
Проверка результата деления
Чтобы проверить правильно ли выполнено деление, нужно частное умножить на делитель. В результате должно получится делимое.
Если выходит иначе, можно сделать вывод о том, что где-то закралась ошибка.
Смысл этого действия очень прост. Например, у нас было a предметов, и эти a предметов мы разложили на b кучек. В каждой кучке оказалось по с предметов. Математически это выглядит так:
Рассмотрим проведение проверки на двух примерах.
Пример 15. Проверка результата деления натуральных чисел
Умножим частное 25 на делитель 19 и выясним, верно ли разделили числа.
Число 475 равно делимому, значит, деление выполнено верно.
Разделите и проверьте результат:
Будем представлять делимое в виде суммы слагаемых и осуществлять деление.
Вывод: деление выполнено верно.
Проверка результата деления чисел делением
Рассмотренный выше способ проверки основан на умножении. Существует также проверка делением. Как ее проводить?
Проверка результата деления
Чтобы проверить верно ли найдено частное, нужно делимое разделить на полученное частное. В результате должен получится делитель.
Если выходит иначе, можно сделать вывод о том, что где-то закралась ошибка.
Правило основано на той же связи между делимым, делителем и частным, что и правило из предыдущего пункта.
Пример 17. Проверка результата деления натуральных чисел
Верно ли равенство:
Разделим делимое на частное:
В результате получился делитель, значит, деление выполнено верно.
Представляя делимое в виде суммы, получаем: