Что понимают под системой

Система

В повседневной практике термин «система» может употребляться во множестве различных смысловых значений, в частности:

Содержание

Определения системы

Существует по меньшей мере несколько десятков различных определений понятия «система», используемых в зависимости от контекста, области знаний и целей исследования. [3] [4] Основной фактор, влияющий на различие в определениях, состоит в том, что в использовании понятия «система» есть двойственность: с одной стороны оно используется для обозначения объективно существующих феноменов, а с другой стороны — как метод изучения и представления феноменов, то есть как субъективная модель реальности. [4]

В связи с этой двойственностью авторы определений различают по меньшей мере два аспекта: как отличить системный объект от несистемного и как построить систему путём выделения её из окружающей среды. На основе первого подхода даётся дескриптивное (описательное) определение системы, на основе второго — конструктивное, [4] иногда они сочетаются. Подходы к определению системы также предлагают делить на онтологический (соответствует дескриптивному), гносеологический и методологический (последние два соответствуют конструктивному). [5]

Так, данное в преамбуле определение из БРЭС [1] является типичным дескриптивным определением.

Примеры дескриптивных определений:

Примеры конструктивных определений:

Таким образом, главное отличие конструктивных определений состоит в наличии цели существования или изучения системы с точки зрения наблюдателя или исследователя, который при этом явно или неявно вводится в определение.

Свойства систем

Общие для всех систем

Классификации систем

Классификации осуществляются по предметному или по категориальному принципу.

Предметный принцип классификации состоит в выделении основных видов конкретных систем, существующих в природе и обществе, с учётом вида отображаемого объекта (технические, биологические, экономические и т. п.) или с учётом вида научного направления, используемого для моделирования (математические, физические, химические и др.).

СистемыПростые (состоящие из небольшого числа элементов)Сложные (достаточно разветвленные, но поддающиеся описанию)Очень сложные (не поддающиеся точному и подробному описанию)
ДетерминированныеОконная задвижка
Проект механических мастерских
Компьютер
Автоматизация
ВероятностныеПодбрасывание монеты
Движение медузы
Статистический контроль качества продукции
Хранение запасов
Условные рефлексы
Прибыль промышленного предприятия
Экономика
Мозг
Фирма

Классификация систем В. Н. Сагатовского:

Категориальные характеристикиСвойстваЭлементыОтношения
Моно
Поли
Статические
Динамические (функционирующие)
Открытые
Закрытые
Детерминированные
Вероятностные
Простые
Сложные

Закон необходимости разнообразия (закон Эшби)

При создании проблеморазрешающей системы необходимо, чтобы эта система имела большее разнообразие, чем разнообразие решаемой проблемы, или была способна создать такое разнообразие. Иначе говоря, система должна обладать возможностью изменять своё состояние в ответ на возможное возмущение; разнообразие возмущений требует соответствующего ему разнообразия возможных состояний. В противном случае такая система не сможет отвечать задачам управления, выдвигаемым внешней средой, и будет малоэффективной. Отсутствие или недостаточность разнообразия могут свидетельствовать о нарушении целостности подсистем, составляющих данную систему.

Источник

Что понимают под системой

СИСТЕМА

Что понимают под системой. Смотреть фото Что понимают под системой. Смотреть картинку Что понимают под системой. Картинка про Что понимают под системой. Фото Что понимают под системой

СИСТЕМА (от греч. σύστεμα – целое, составленное из частей, соединение) – совокупность элементов, находящихся в отношениях и связях друг с другом, которая образует определенную целостность, единство. Претерпев длительную историческую эволюцию, понятие «система» с сер. 20 в. становится одним из ключевых философско-методологических и специально-научных понятий. В современном научном и техническом знании разработка проблематики, связанной с исследованием и конструированием систем разного рода, проводится в рамках системного подхода, общей теории систем, различных специальных теорий систем, системном анализе, в кибернетике, системотехнике, синергетике, теории катастроф, термодинамике неравновесных систем и т.п.

Первые представления о системе возникли в античной философии, выдвинувшей онтологическое истолкование системы как упорядоченности и целостности бытия. В древнегреческой философии и науке (Платон, Аристотель, стоики, Евклид) разрабатывалась идея системности знания (целостность знания, аксиоматическое построение логики, геометрии). Воспринятые от античности представления о системности бытия развивались как в системно-онтологических концепциях Спинозы и Лейбница, так и в построениях научной систематики 17–18 вв., стремившейся к естественной (а не телеологической) интерпретации системности мира (напр., классификация К.Линнея). В философии и науке Нового времени понятие системы использовалось при исследовании научного знания; при этом спектр предлагаемых решений был очень широк – от отрицания системного характера научно-теоретического знания (Кондильяк) до первых попыток философского обоснования логико-дедуктивной природы систем знания (И.Г.Ламберт и др.).

Принципы системной природы знания разрабатывались в немецкой классической философии: согласно Канту, научное знание есть система, в которой целое главенствует над частями; Шеллинг и Гегель трактовали системность познания как важнейшее требование теоретического мышления. В западной философии 2-й пол. 19–20 в. содержатся постановки, а в отдельных случаях и решения некоторых проблем системного исследования: специфики теоретического знания как системы (неокантиантво), особенностей целого (холизм, гештальтпсихология), методы построения логических и формализованных систем (неопозитивизм). Определенный вклад в разработку философских и методологических оснований исследования систем внесла марксистская философия.

Для начавшегося со 2-й пол. 19 в. проникновения понятия системы в различные области конкретно-научного знания важное значение имело создание эволюционной теории Ч.Дарвина, теории относительности, квантовой физики, позднее – структурной лингвистики. Возникла задача построения строгого определения понятия системы и разработки оперативных методов анализа систем. Бесспорный приоритет в этом отношении принадлежит разработанной А.А.Богдановым в нач. 20 в. концепции тектологии всеобщей организационной науки. Эта теория в то время не получила достойного признания и только во 2-й пол. 20 в. значение тектологии Богданова было адекватно оценено. Некоторые конкретно-научные принципы анализа систем были сформулированы в 1930–40-х гг. в работах В.И.Вернадского, в праксеологии Т.Котарбиньского. Предложенная в конце 1940-х гг. Л.Берталанфи программа построения «общей теории систем» явилась одной из попыток обобщенного анализа системной проблематики. Именно эта программа системных исследований получила наибольшую известность в мировом научном сообществе 2-й пол. 20 в. и с ее развитием и модификацией во многом связано возникшее в это время системное движение в науке и технических дисциплинах. Дополнительно к этой программе в 1950–60-х гг. был выдвинут ряд общесистемных концепций и определений понятия системы – в рамках кибернетики, системного подхода, системного анализа, системотехники, теории необратимых процессов и т.п.

При определении понятия системы необходимо учитывать теснейшую взаимосвязь его с понятиями целостности, структуры, связи, элемента, отношения, подсистемы и др. Поскольку понятие системы имеет чрезвычайно широкую область применения (практически каждый объект может быть рассмотрен как система), постольку его достаточно полное понимание предполагает построение семейства соответствующих определений – как содержательных, так и формальных. Лишь в рамках такого семейства определений удается выразить основные системные принципы: целостности (принципиальная несводимость свойств системы к сумме свойств составляющих ее элементов и невыводимость из последних свойств целого; зависимость каждого элемента, свойства и отношения системы от его места, функций и т.д. внутри целого); структурности (возможность описания системы через установление ее структуры, т.е. сети связей и отношений; обусловленность поведения системы не столько поведением ее отдельных элементов, сколько свойствами ее структуры); взаимозависимости системы и среды (система формирует и проявляет свои свойства в процессе взаимодействия со средой, являясь при этом ведущим активным компонентом взаимодействия); иерархичности (каждый компонент системы, в свою очередь, может рассматриваться как система, а исследуемая в данном случае система представляет собой один из компонентов более широкой системы); множественности описания каждой системы(в силу принципиальной сложности каждой системы ее адекватное познание требует построения множества различных моделей, каждая из которых описывает лишь определенный аспект системы) и др.

Каждая система характеризуется не только наличием связей и отношений между образующими ее элементами, но и неразрывным единством с окружающей средой, во взаимодействии с которой система проявляет свою целостность. Иерархичность присуща не только строению, морфологии системы, но и ее поведению: отдельные уровни системы обусловливают определенные аспекты ее поведения, а целостное функционирование оказывается результатом взаимодействия всех ее сторон и уровней. Важной особенностью систем, особенно живых, технических и социальных, является передача в них информации; существенную роль в них играют процессы управления. К наиболее сложным видам систем относятся целенаправленные системы, поведение которых подчинено достижению определенных целей, и самоорганизующиеся системы, способные в процессе функционирования видоизменять свою структуру. Для многих сложных живых и социальных систем характерно наличие разных по уровню, часто не согласующихся между собой целей.

Существенным аспектом раскрытия содержания понятия системы является выделение различных типов систем. В наиболее общем плане системы можно разделить на материальные и абстрактные. Первые (целостные совокупности материальных объектов) в свою очередь делятся на системы неорганичной природы (физические, геологические, химические и др.) и живые системы, куда входят как простейшие биологические системы, так и очень сложные биологические объекты типа организма, вида, экосистемы. Особый класс материальных живых систем образуют социальные системы, многообразные по типам и формам (от простейших социальных объединений до социально-экономической структуры общества). Абстрактные системы являются продуктом человеческого мышления; они также могут быть разделены на множество различных типов (особые системы представляют собой понятия, гипотезы, теории, последовательная смена научных теорий и т.д.). К числу абстрактных систем относятся и научные знания о системах разного типа, как они формулируются в общей теории систем, специальных теориях систем и др. В науке 20 в. большое внимание уделяется исследованию языка как системы (лингвистическая система); в результате обобщения этих исследований возникла общая теория знаков – семиотика. Задачи обоснования математики и логики вызвали интенсивную разработку принципов построения и природы формализованных систем (металогика, математика). Результаты этих исследований широко применяются в кибернетике, вычислительной технике, информатике и др.

При использовании других оснований классификации систем выделяются статичные и динамичные системы. Для статичной системы характерно, что ее состояние с течением времени остается постоянным (напр., газ в ограниченном объеме – в состоянии равновесия). Динамичная система изменяет свое состояние во времени (напр., живой организм). Если знание значений переменных системы в данный момент времени позволяет установить состояние системы в любой последующий или любой предшествующий моменты времени, то такая система является однозначно детерминированной. Для вероятностной (стохастической) системы знание значений переменных в данный момент времени позволяет предсказать вероятность распределения значений этих переменных в последующие моменты времени. По характеру взаимоотношений системы и среды системы делятся на закрытые (в них не поступает и из них не выделяется вещество, происходит лишь обмен энергией) и открытые (постоянно происходит ввод и вывод не только энергии, но и вещества). По второму закону термодинамики, каждая закрытая система в конечном счете достигает состояния равновесия, при котором остаются неизменными все макроскопические величины системы и прекращаются все макроскопические процессы (состояние максимальной энтропии и минимальной свободной энергии). Стационарным состоянием открытой системы является подвижное равновесие, при котором все макроскопические величины остаются неизменными, но продолжаются макроскопичные процессы ввода и вывода вещества.

Основная задача специализированных теорий систем – построение конкретно-научного знания о разных типах и разных аспектах систем, в то время как главные проблемы общей теории систем концентрируются вокруг логико-методологических принципов анализа систем, построения метатеории системных исследований.

1. Рапопорт А. Различные подходы к общей теории систем. – В кн.: Системные исследования. Ежегодник 1969. М., 1969;

2. Гвишиани Д.М. Организация и управление. М., 1972;

3. Огурцов А.П. Этапы интерпретации системности знания. – В кн.: Системные исследования. Ежегодник 1974. М., 1974;

4. Садовский В.Н. Основания обшей теории систем. М., 1974;

5. Захаров В.Н., Поспелов Д.Α., Хазацкий В.Е. Системы управления. М., 1977;

6. Уемов А.И. Системный подход и общая теория систем. М., 1978;

7. Месарович М., Такахара Я. Общая теория систем: математические основы. М., 1978;

8. Афанасьев В.Г. Системность и общество. М., 1980;

9. Кузьмин В.П. Принцип системности в теории и методологии К.Маркса. М., 1983;

10. Блауберг И.В. Проблема целостности и системный подход. М., 1997;

11. Юдин Э.Г. Методология. Системность. Деятельность. М., 1997;

12. Агошков Е.Б., Ахлибинский Б.В. Эволюция понятия системы. – «ВФ», 1998, № 7;

13. Modern Systems Research for the Behavioral Scientist. A Sourcebook, ed. by W.Buckley. Chi., 1968;

14. Bertalanfy L.V. General System Theory. Foundations, Development, Applications. N. Y., 1969;

15. Trends in General Systems Theory, ed. by G.J.Klir. N. Y., 1972;

16. Laszlo E. Introduction to Systems Philosophy. N. Y., 1972;

17. Sutherland J.W. Systems: Analysis, Administration and Architecture. N. Y., 1975;

18. Mattessicq R. Instrumental Reasoning and Systems Methodology. Dortrecht – Boston, 1978;

19. Rappoport A. General System Theory. Cambr. (Mass.), 1986.

Источник

Понятие системы и конструкции. Их место в проектировании информационных систем

После прочтения комментариев к предыдущей статье Классификация конструкций: примеры и заблуждения, посвященной классификации конструкций, я понял, насколько разное представление мы имеем относительно термина конструкции. Когда я писал статью, мне казалось, что этот термин трактуется довольно просто. Но, почитав комментарии, понял, что стоит поговорить о нем отдельно.

Конструкция

Толковый словарь Ефремовой определяет два разных понятия, которые обозначаются одним термином конструкция:

Поскольку состав – это множество, то первое понятие переводится так: конструкция — это множество объектов, связанных между собой связями. При этом, судя по определению, объекты должны быть рукотворным и неживыми. То есть, нельзя представить Землю в виде конструкции, если не предположить, что ее сделали инопланетяне. Нельзя представить ДНК в виде конструкции, если только эта ДНК не создана кем-то. То есть, в определение конструкции надо добавить, что объекты рукотворные. Например, множество объектов: <фюзеляж, крылья, хвост>состоит из рукотворных объектов, и, потому, может называться конструкцией. Конструкцией под названием самолет. Замечу, что в данном контексте самолет – это не объект, а множество объектов <фюзеляж, крылья, хвост>. Можно назвать это множество самолет(к).

Сколько объектов может быть в конструкции? В определении нет ответа на этот вопрос. Но мы можем предположить, что их конечное число, большее одного, потому что в определении говорится о связях. Итого получилось: рукотворное множество объектов, созданное человеком, объекты объединены связями, множество конечное, количество элементов больше одного.

При этом нет обязательного условия, чтобы конструкция имела название, или явно был указал объект, чья конструкция рассматривается. Можно моделировать и безымянную конструкцию.

Второе понятие термина «конструкция» значит следующее: конструкция — это объект, который может быть представлен в виде множества объектов. Например, поскольку самолет как объект может быть представлен в виде множества объектов, состоящего из фюзеляжа, крыльев и хвоста, его также называют конструкцией. В данном тексте, чтобы отличить обозначение самолета как объекта от обозначения самолета как множества, можно написать: самолет(о) может быть представлен в виде множества объектов — самолета(к).

Любой объект может быть разделен на части. Неделимых объектов мы не знаем. То есть, любой объект можно назвать конструкцией? Нет. Потому что не всякий рукотворный объект можно поделить на рукотворные части. Например, отливка (болванка), являясь рукотворным объектом, не может быть поделена на рукотворные части. Поэтому болванку нельзя назвать конструкцией.

Разбирая термин «конструкция», мы обнаружили одну важную особенность языка: объект и его конструкция называются одним именем. То есть, самолет(о) и самолет(к) в быту называют одним именем: самолет. Понятно, что объект и множество объектов – это разные концепты. В словаре Ефремовой эти концепты различаются, но в быту название одно, и потому, люди часто путают их и не могут разделить эти два понятия, обозначенные одним термином. Та же проблема была в процессном подходе, в котором понятия функция, функциональная структура, сценарий и тд. назывались одним термином — процесс. Из-за этого многим аналитикам казалось, что функция и сценарий – одно и то же.

Путаница, которая возникает из-за того, что два понятия названы одним словом, проявляет себя в ответе на следующий вопрос: что такое тот или иной объект? Ответы можно разделить на два типа:

Другой пример: поезд – состав, сцепленных между собою железнодорожных вагонов, приводимых в движение локомотивным или моторным вагоном. В данном контексте дается определению поезду(к). Можно сказать, что поезд — это длинное транспортное средство для перевозки пассажиров или грузов по железной дороге. Это – определение поезда(о). Интересно, что в словарях можно найти определения как тем, так и другим понятиям.

В быту мы не замечаем разницы между такого рода определениями. Например, группе аналитиков показывается макет производственной линии. Каждый при этом может увидеть совершенно разные картины. Один увидит объект под названием «производственная линия», другой – конструкцию, имеющую то же название. Поскольку, объект и его конструкция – совершенно разные понятия, то увидят они совершенно разные вещи. До тех пор, пока они не договорятся о едином взгляде на этот макет, они будут говорить о разных объектах. Хорошо, если контекст заставит их сойтись на одной точке зрения. Однако, это происходит не всегда. Этап, на котором выясняется предмет обсуждения обычно пропускается. Из-за этого возникают ошибки в понимании. Та же проблема возникает, когда мы хотим строить онтологическую модель. Например, если мы хотим выяснить сложность конструкции самолета при помощи атрибута: «количество конструктивных элементов самолета», то надо найти объект в модели, которому приписать этот атрибут. Приписать его самолету(о) нельзя, потому что разделить самолет на части можно множеством способов. Поэтому, это атрибут должен быть отнесен ко множеству объектов, но не к объекту.

Система

Посмотрим, как справляется с данным терминологическим парадоксом системная инженерия. Системная инженерия дает определение системы так:

Если для конструкций отношение между объектом и его конструкцией называлось так: «конструкция объекта», то для обозначения отношения между объектом и его системой используется другой термин: «строение объекта». Например, строение человека связывает человека(о) с человеком(с). Кстати, интересно, почему нет термина «система объекта» по аналогии с термином «конструкцией объекта»?

Можно ли назвать системой объект, а не множество объектов? То есть можно ли применить термин система к объекту так же, как термин конструкция применить к объекту? Скорее всего, — можно. Например, говорят, что система обладает эмерджентностью. Формально этот тезис переводится так: свойства объекта, строение которого представлено в виде исследуемой системы, отличны от свойств элементов этой системы. Поскольку в данном контексте объект назван системой, то объект тоже можно назвать системой.

Поскольку любой объект может быть разделен на части, то любой объект может быть назван системой. Это отличает термин система от термина конструкция, потому что не любой объект может быть назван конструкцией.

Мне кажется, чтобы ликвидировать коллизии, которые могут возникнуть у инженера, читающего книги по системной инженерии, в словари стоит внести второе определение термина система по аналогии со вторым значением термина конструкция:

Можно ли распространить на системы тезис о том, что любой объект может иметь разные структуры в зависимости от наблюдателя? Да, можно. Мы прекрасно знакомы с двумя разными парадигмами строения человека, которые порождают разные структуры: внутреннее строение и внешнее строение человека.

В системной инженерии также существует требование, которое накладывает ограничения на множества возможных объектов. Речь об эмерджентности. Объект, чья структура представлена в виде системы, должен обладать свойствами, отличными от свойств элементов системы. При этом возникает два вопроса:

Обобщение понятия конструкция

Теперь попробуем обобщить понятие конструкция(к) и система(с) на более широкий класс объектов и множеств. В своей статье я именно это и хотел сделать. Видимо, без текущего вступления это было не понятно. Я ввел понятие обобщенной конструкции(к), которая отличается от общепринятого понятия конструкции следующим:

Получилась такая иерархия классов: Обобщенная конструкция – это самое широкое множество, подмножеством которого являются системы и конструкции.

Введение обобщенной конструкции понадобилось мне для приведения к единому виду всех структур, которые мы создаем для описания различных конструкций, а также для описания тех ограничений, которые возникают при упрощении этих структур.

Например, чаще всего, моделирование конструкций производится при помощи связей «часть-целое». При этом информацию о конструкции (средняя масса элементов конструкции, например) мы передаем в модель объекта, конструкцию которого мы моделируем. Ограничения такого способа моделирования в том, что мы не можем создать несколько различных конструкций одного объекта, будь то конструкций в разных парадигмах, будь то конструкций в одной парадигме, но отличающихся версиями.

Однажды мне была поставлена задача смоделировать различные версии конструкции одного космического аппарата. Версии существовали одновременно во времени и моделировали различные версии конструкторских решений. К тому же сами версии менялись во времени, потому что конструкторские решения эволюционировали с течением времени. Без введения понятия конструкция решить такую задачу было можно, но выглядело это очень странно. Похожая задача решалась мной при моделировании планов производства работ, которых одновременно было несколько версий: оптимистичный, пессимистичный и реальный. При этом план производства работ, в свою очередь, был частью другого плана производства работ. И таких этажей было 5. До ввода в модель объектов, моделирующих конструкции, моделирование выглядело так: множество связей «часть-целое», «раскрашенных» в разные цвета. «Красные» связи моделировали одну конструкцию объекта, «зеленые» — другую. «Цветов» было много и существовала проблема стыковки разных цветов. Фактически, эти «цвета» моделировали различные точки зрения на конструкцию объекта, не называя это явно. То же приходилось делать со свойствами объекта, которому были переданы свойства конструкции: у нас были «красные» значения свойств и «зеленые». Так мы выходили из положения до введения понятия «конструкция». Мне интересно, как моделируется подобный кейс в стандарте ИСО 15926?

Другой практический кейс: ЛЭП с одной стороны, может быть поделена на трассы, каждая трасса — на провода. С другой стороны, каждая трасса может быть поделена на участки трассы между опорами и тд.

Что понимают под системой. Смотреть фото Что понимают под системой. Смотреть картинку Что понимают под системой. Картинка про Что понимают под системой. Фото Что понимают под системой

Таким образом, ЛЭП можно разобрать на части разными способами. И каждый способ решает конкретную практическую задачу. Как в данном случае должен смоделировать эти конструкции аналитик, руководствуясь стандартом ИСО 15926?

Есть интересный прием деления одного и того же объекта на части разными способами. Этот прием работает, когда объекты, на которые мы делим объект, относятся к разным предметным областям. Например, один и тот же объект мы можем назвать предприятие, а можем назвать функция. Это две разные парадигмы представления одного и того же. Тогда функции мы делим отдельно, предприятие – отдельно. В принципе, если можно добавлять новые типы объектов, то та часть проблем, которая связана с моделированием объектов в разных парадигмах, закрывается этим способом.

Моделирование конструкций при помощи связей «часть-целое» довольно распространено, потому что сильно сокращает объем модели и упрощает алгоритмы работы с ней. Поэтому часто, аналитики используют такой способ моделирования. Однако, этот способ накладывает ограничения на количество одновременно существующих версий конструкций, заставляет все отрасли предприятия работать с одной моделью конструкций, даже, если для кого-то эта модель является контрпродуктивной. При этом, если речь идет о конструкции объектов, то разные отрасли предприятия еще могут как-то договориться, то при моделировании функциональных структур, подобная договоренность становится, на мой взгляд, невозможной. Поэтому, возвращаясь к стандарту ИСО 15926, боюсь предположить, что он был заточен для моделирования только двух точек зрения на происходящее и существующее. Для этого в нем есть два типа объектов: физические и функциональные. При этом каждый раз при моделировании двух точек зрения модельеру приходится делать непростой выбор между тем, что назвать физическим, а что назвать функциональным объектом. Потому что и та и другая конструкции могут одновременно оказаться функциональными, или одновременно физическими объектами. Например, участок ЛЭП между опорами – это физический, или функциональный объект? Можно сказать, что физический, но, если заказчик скажет, что функция этого участка – перенос энергии на расстояние, то участок ЛЭП между опорами станет функциональным объектом, и смоделировать две разные конструкции одной ЛЭП не удастся. Или, более очевидный пример: молекула водорода, с одной стороны, состоит из атомов (одна система), а, с другой стороны – из ядер и электронов (другая система). Понятно, что природа этих систем одинаковая – физическая. Как ИСО 15926 будет моделировать эти две разные физические конструкции?

Проблема с ООП программированием та же: конструкция в ООП моделируется при помощи агрегации объектов, фактически, связей «часть-целое» Я не могу представить себе в ООП объект, который может быть представлен в виде разных конструкций. Потому что ООП также заточен под моделирование конструкций, но только с одной точки зрения. В ООП нельзя построить даже двух разных конструкций одного объекта. Как в ООП смоделировать тот факт, что ЛЭП состоит из трасс и одновременно состоит из участков ЛЭП между опорами?

Место конструкции в процессе мышления

Еще несколько слов о месте конструкции в нашем мышлении, а, следовательно, моделировании. Есть два пути достижения понимания – синтез и анализ. Когда мы делаем анализ, мы представляем себе объекты в виде обобщенных конструкций, когда синтез, наоборот, обобщенные конструкции представляем в виде объектов. Совершая анализ, мы пытаемся понять, как устроен объект, совершая синтез, мы пытаемся упростить модель, генерализируя ее. Получается цепочка: …объект – его конструкция – объект (элемент этой конструкции) – конструкция объекта – объект (элемент этой конструкции) – конструкция объекта… Далее я не буду повторять «обобщенная», потому что буду подразумевать всегда этот класс конструкций. Начинать моделирование можно как с объекта, так и с конструкции. Двигаться можно как вниз, так и вверх по иерархии объектов, совершая анализ, или синтез. По-другому это можно представить, как приближение к объектам или удаление от них. Приближаясь, мы делаем анализ, делая описание более подробным, удаляясь – синтез, или обобщение. Довольно забавно, но в современных стандартах моделирования я много читал про декомпозицию, но очень мало про композицию. Если встречается что-то, посвященное композиции, об этом пишется непонятными словами, которые довольно сложно трактовать. Например, когда мы собираем статистику по операциям в соответствии с методологией Шухарта, мы получаем параметры объектов (функций), но сами объекты при этом не называем. Когда мы моделируем процессы и декомпозируем операции, почему-то мы не можем делать обратной операции – композиции процессов в операции. Или сам процесс описания предметной области почему-то назван «анализ». Но почему не «синтез»? На мой взгляд, аналитик занимается и тем и другим процессом: и синтезом, и анализом. Строя статистические отчеты, мы занимаемся синтезом, разбирая объекты на части, — анализом.

Но даже с анализом, который вроде, должен быть хорошо описан в стандартах, возникают сложности при реализации.

Конструкция должна помочь нам узнать об объекте что-то новое. Например, рассмотрим плоскую фигуру, частями которой тоже будут плоские фигуры. Возможность такого деления позволяет нам ввести понятие меры Жордана, которая, в свою очередь, позволяет нам ввести понятие площади. Благодаря делению объекта на себе подобные объекты, мы смогли ввести понятие меры. Таким образом, деление воды на воду позволяет нам узнать о воде что-то новое – ее объем. Поэтому деление воды на воду я бы тоже назвал конструкцией, а в определение конструкции зашил тезис о том, что она служит инструментом для достижения понимания.

Ограничения стандартов моделирования

Чего не хватает в стандартах моделирования? Прежде всего, описание класса задач, которые они решают. Стандарты хороши тем, что позволяют разным субъектам создать модель, понимаемую ими одинаково в рамках задач, которые они решают, автоматизировать решения этих задач, наладить обмен информацией между разными информационными системами в рамках решаемых задач и тд. Что плохого в них? Плохо, что в стандартах плохо, а зачастую никак не описаны границы их применения. Поэтому стандарты, заточенные под решение одного класса задач, стремятся распространить на решение другого класса. Если круг задач очерчен, то попытка решить задачу, выходящую за этот круг, должна приводить к изменению стандарта, или отказу от него.

Сейчас становится популярна задача создания единой информационной модели на основе единого онтологического базиса. При этом в качестве основы часто берут какой-то отраслевой стандарт и пытаются отмаппить решение всех задач на этот стандарт (то есть пытаются использовать его как базис, чтобы потом расширить). Но это невозможно, хотя бы потому что разные отрасли деятельности человека производят деление объектов разным способом. Поэтому добавление в единую информационную модель новых знаний связано с созданием новых конструкций и новых объектов, которые надо маппить на уже существующие объекты и конструкции.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *