Что понимают под системой единиц измерения физических величин
СИСТЕМА ЕДИНИЦ ФИЗИЧЕСКИХ ВЕЛИЧИН
СИСТЕМА ЕДИНИЦ ФИЗИЧЕСКИХ ВЕЛИЧИН — совокупность основных (независимых) и производных единиц физических величин (см.), отражающая существующие в природе связи между ними и образованная в соответствии с принятыми принципами. Часто систему единиц обозначают по начальным буквам её основных единиц, напр. МКС — метр (единица длины), килограмм (единица массы), секунда (единица времени); СГС — сантиметр (единица длины), грамм (единица массы), секунда (единица времени) и т.д. Наличие большого числа систем единиц создавало неудобства, усложняло технические расчёты, затрудняло изучение научных дисциплин, мешало развитию международных научно-технических связей. Введение СИ — Международной системы единиц (см.) — создало перспективу всеобщей универсальности (позволяющей отказаться от остальных систем и охватывающей все виды измерений в любой области науки), унифицированности (позволяющей использовать одни и те же единицы для различных однородных физ. величин, напр. джоуль — единица работы, механической энергии, электрической энергии, количества теплоты) и когерентности, т.е. согласованности основных единиц величин с производными. Единица физ. величины — конкретная (фиксированная) физ. величина, которой по определению присвоено числовое значение, равное единице. Разные единицы одной и той же величины различают по размеру: напр. сутки, час, минута, секунда (единицы времени) имеют различный размер (1 сут = 86400 с, 1 ч = 3600 с, 1 мин = 60 с).
Смотреть что такое «СИСТЕМА ЕДИНИЦ ФИЗИЧЕСКИХ ВЕЛИЧИН» в других словарях:
система единиц физических величин — система единиц Совокупность основных и производных единиц физических величин, образованная в соответствии с принципами для заданной системы физических величин. Пример. Международная система единиц (СИ), принятая в 1960 г. XI ГКМВ и уточненная на… … Справочник технического переводчика
Система единиц физических величин — совокупность основных и производных единиц физических величин, образованная в соответствии с принципами для заданной системы физических величин. Источник: РЕКОМЕНДАЦИИ ПО МЕЖГОСУДАРСТВЕННОЙ СТАНДАРТИЗАЦИИ. ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ… … Официальная терминология
Система единиц физических величин — (система единиц) – совокупность основных и производных единиц, относящихся к некоторой системе величин и образованная в соответствии с принятыми принципами. [СН 528 80] Рубрика термина: Общие термины Рубрики энциклопедии: Абразивное… … Энциклопедия терминов, определений и пояснений строительных материалов
когерентная система единиц физических величин — когерентная система единиц Система единиц физических величин, состоящая из основных единиц и когерентных производных единиц. Примечание. Кратные и дольные единицы от системных единиц не входят в когерентную систему. [РМГ 29 99] EN coherent system … Справочник технического переводчика
Единица системы единиц физических величин производная — Производная единица системы единиц физических величин единица производной физической величины системы единиц, образованная в соответствии с уравнением, связывающим ее с основными единицами или с основными и уже определенными производными. … … Официальная терминология
СИСТЕМА ЕДИНИЦ — физических величин, совокупность основных и производных единиц нек рой системы физ. величин, образованная в соответствии с принятыми принципами. С. е. строится на основе физ. теорий, отражающих существующую в природе взаимосвязь физ. величин. При … Физическая энциклопедия
Система единиц (измерений) — Совокупность основных и производных единиц измерений, образованная в соответствии с принятыми по договоренности правилами (принципами). Примечание. Термин «система единиц физических величин» не вполне корректен, так как известные системы единиц,… … Словарь-справочник терминов нормативно-технической документации
система единиц (измерений) — Совокупность основных и производных единиц измерений, образованная в соответствии с принятыми по договоренности правилами (принципами). Примечание Термин «система единиц физических величин» не вполне корректен, так как известные системы … Справочник технического переводчика
СИСТЕМА ЕДИНИЦ — совокупность основных (независимых) и производных единиц физических величин, отражающая существующие в природе взаимосвязи этих величин. При определении единиц системы подбирается такая последовательность физических соотношений, в которой каждое… … Большой Энциклопедический словарь
СИСТЕМА ЕДИНИЦ — СИСТЕМА ЕДИНИЦ, совокупность основных (независимых) и производных единиц физических величин, отражающая взаимосвязи этих величин. С 1981 применяется Международная система единиц (СИ); в физике и астрономии иногда используют СГС систему единиц и… … Современная энциклопедия
Системы единиц физических величин
Система единиц — это совокупность основных и производных единиц, относящихся к некоторой системе величин, построенная в соответствии с принятыми принципами.
Исторически первой системой единиц физических величин была принятая в 1791 г. Национальным собранием Франции метрическая система мер.
Она не являлась еще системой единиц в современном понимании, а включала в себя единицы длин, площадей, объемов, вместимостей и веса, в основу которых были положены две единицы: метр и килограмм. В 1832 г. немецкий математик К.Гаусс предложил методику построения системы единиц как совокупности основных и производных.
За основу были приняты три независимые друг от друга единицы: миллиметр — единица длины; миллиграмм — единица массы; секунда — единица времени. Все остальные единицы можно было определить с помощью этих трех. Такую систему единиц, связанных определенным образом с тремя основными единицами длины, массы и времени, Гаусс назвал абсолютной системой.
В дальнейшем с развитием науки и техники появился ряд систем единиц физических величин, построенных по принципу, предложенному Гауссом, базирующихся на метрической системе мер, но отличающихся друг от друга основными единицами.
Система СГС. Система единиц физических величин СГС, в которой основными единицами являются с антиметр как единица длины, грамм как единица массы и секунда как единица времени, была принята в 1881 г. Первым международным конгрессом электриков. Конгресс основывался на принципах, предложенных Гауссом, и ввел наименование для двух важнейших производных единиц: дина — для измерения силы и эрг — работы. Для измерения мощности в системе СГС применяется эрг в секунду, кинетической вязкости — стокс, динамической — пуаз.
Давление в системе СГС измеряют в динах на квадратный сантиметр. Эта единица в прошлом называлась бар, однако в связи с переименованием в бар единицы давления, равной 105 Н/м2, для единиц давления СГС иногда применяют наименование барий и одновременно микробар (так как она равна одной миллионной нового бара).
Исторически сложилось так, что для них к настоящему времени существует семь видов системы СГС для электрических и магнитных величин, из которых наиболее распространены три:
Система МКГСС. В период установления метрической системы мер, в конце XVIII в., килограмм был принят как единица веса. Применение килограмма как единицы веса, а в последующем как единицы силы вообще, привело в конце XIX в. к формированию системы единиц физических величин с тремя основными единицами: метр — единица длины, килограмм сила — единица силы и секунда — единица времени (система МКГС).
Килограммсила (кгс) — это сила, которая сообщает массе, равной массе международного прототипа килограмма, ускорение 9,80665 м/с2 (нормальное ускорение свободного падения).
Эта система единиц широко распространилась в механике и технике, получив неофициальное наименование «техническая». Одной из причин распространения системы МКГСС явилось удобство выражения сил в единицах веса и удобный размер основной единицы силы — килограммсилы.
За единицу массы в системе МКГСС принята масса тела, получающего ускорение 1 м/с2 под действием приложенной силы 1 кгс. Эта единица (килограмм сила секунда в квадрате на метр) иногда называется технической единицей массы или инертной, хотя оба эти наименования не установлены ни в одной из рекомендаций на единицы физических величин. Единица массы МКГСС — 1 кгс с2/м 9,81 кг — единицы массы системы СИ. Широко при менялись в технике единицы работы и энергии МКГСС — кило граммсиламетр (кгсм) и единица мощности — килограммсила метр в секунду (кгс м/с).
Система МТС. В системе единиц МТС основными единицами являются: единица длины — метр, единица массы — тонна и единица времени — секунда. Эта система единиц впервые была установлена в 1919 г. во Франции, где была принята в законоположении о единицах измерений. В 1927—1933 гг. система МТС была рекомендована советскими стандартами на механические единицы.
Выбор тонны в качестве основной единицы массы казался удачным, так как достигалось соответствие между единицами длины и объема, с одной стороны, и единицей массы — с другой (с точностью, достаточной для большинства технических расчетов, 1 т соответствует массе 1 м3 воды). Кроме того, единица работы и энергии в этой системе (килоджоуль) и единица мощности (киловатт) совпадали с соответствующими кратными практическими электрическими единицами.
В системе МТС единицей силы служит с тен (сн), равный силе, сообщающей массе 1 т ускорение 1 м/с2, единицей давления — пьеза — 1 сн/м2. Абсолютная практическая система электрических единиц. Эта система была установлена в 1881 г. первым Международным конгрессом электриков в качестве производной от системы СГСМ и предназначалась для практических измерений в связи с тем, что электрические и магнитные единицы системы СГСМ оказались неудобными для практики (одни слишком велики, другие слишком малы).
В числе первых практических электрических единиц были приняты:
Второй Международный конгресс электриков в 1889 г. включил в список практических электрических единиц еще три:
В дальнейшем решениями МЭК и ГКМВ были установлены другие практические электрические и магнитные единицы (например, вебер, сименс, тесла). Международные электрические единицы, отличавшиеся от единиц абсолютной практической системы электрических единиц тем, что они базировались не на теоретическом определении единиц, а на их эталонах, были приняты в 1893 г. в Чикаго Третьим международным конгрессом электриков.
Конгресс установил три основные международные электрические единицы: международный ом, для определения которого использовали ртутный эталон, международный ампер, определяемый с помощью серебряного вольтметра, и международный вольт, определяемый по элементу Кларка. Остальные электрические единицы (международный кулон, фарад и др.) были определены как производные от них.
Завершением работы по установлению международных электрических единиц и четкому разграничению абсолютных практических единиц и международных явились решения Международной Лондонской конференции электриков в 1908 г. В качестве единиц, которые с достаточным приближением при практических измерениях и для законодательных целей воспроизводят электрические единицы, конференция рекомендовала принять международный ом, международный ампер, международный вольт и международный ватт.
Система МКСА. Основы этой системы были предположены в 1901 г. итальянским ученым Дж.Джорджи, поэтому система имеет и второе наименование, принятое в 1958 г. МЭК — «система Джорджи», но не получившая, однако, распространения. Основными единицами системы МКСА являются метр, килограмм, секунда и ампер. В системе МКСА сила измеряется в ньютонах, работа и энергия — джоулях, мощность — ваттах.
В системе МКСА механические единицы полностью согласованы с единицами абсолютной практической системы электрических и магнитных единиц — ампером, вольтом, омом, кулоном и др. Система МКСА является частью Международной системы единиц СИ.
Внесистемные единицы.
Несмотря на определенные преимущества, которые дает применение единиц, определяемых той или иной системой, до настоящего времени широко распространены различные единицы, не укладывающиеся ни в одну из систем. Число так называемых внесистемных единиц довольно велико, и от многих из них нельзя отказаться ввиду удобства их применения в определенных областях, другие из них сохранились в силу исторических традиций.
Так, исторически возникла единица давления — атмосфера, равная давлению, производимому силой 1 кгс на площадь 1 см2, ибо атмосфера близка по размеру к среднему давлению атмосферного воздуха на уровне моря.
Что представляет собой система единиц физических величин?
Система единиц физических величин:совокупность основных и производных единиц физических величин, образованная в соответствии с принципами для заданной системы физических величин. Например, Международная система единиц (СИ), принятая в 1960 г.
Основная единица системы единиц физических величин:единица основной физической величины в данной системе единиц. Например, основные единицы Международной системы единиц: метр (м), килограмм (кг), секунда (с), ампер (А), кельвин (К), моль (моль) и кандела (кд).
Определение понятия «дополнительная единица» в международных документах отсутствует. До введения Международной системы единиц СИ это понятие в физике не применялось. В СИ единицы плоского (радиан) и телесного (стерадиан) углов выделены в отдельную группу дополнительных единиц, хотя определение, что понимается под дополнительными величинами и, соответственно, единицами не дано.
Производная единица системы единиц физических величин:единица производной физической величины системы единиц, образованная в соответствии с уравнением, связывающим ее с основными единицами или же с основными и уже определенными производными.
Что такое производные единицы СИ?
Производные единицы СИ образуются из основных, дополнительных и ранее образованных производных единиц СИ при помощи уравнений связи между физическими величинами, в которых числовые коэффициенты равны единице. Для этого величины в правой и левой частях уравнения связи принимают равными единицам СИ. Например, для производной единицы скорости СИ, определяемой из уравнения v = L/T записывают уравнение единиц [v] = [L] /[T], а вместо символов Lи T подставляют их единицы (1 м и 1 с) и получают [V]=1 м/1 с = 1 м/с. Это означает, что единицей скорости СИ является метр в секунду.
Производным единицам могут присваиваться наименования в честь известных ученых.
Международная система единиц физических величин: понятие физической величины, способы определения
2018 год можно назвать судьбоносным в метрологии, потому что это время настоящей технологической революции в международной системе единиц физических величин СИ. Речь о пересмотре определений главных физических величин. Будет ли теперь килограмм картошки в супермаркете весить по-новому? C картошкой будет по-прежнему. Изменится другое.
Что было до системы СИ
Общие стандарты в мерах и весах понадобились еще в древние времена. Но особенно нужными общие правила измерений стали с вместе с появлением научно-технического прогресса. Ученым нужно было разговаривать на общем языке: один фут – это сколько сантиметров? И что такое сантиметр во Франции, когда он не совпадает с итальянским?
Вам будет интересно: «Препоны» – это что такое? Значение и синонимы
Францию вполне можно назвать почетным ветераном и победителем исторических метрологических баталий. Именно во Франции в 1791 году была официально утверждена система измерений и их единиц, а определения главных физических величин были описаны и завизированы в качестве государственных документов.
Французы первыми поняли, что физические величины должны быть привязаны к природным объектам. Например, один метр был описан как 1/40000000 часть длины меридиана с севера на юг к экватору. Он был привязан, таким образом, к размерам Земли.
Один грамм также привязали к природным явлениям: его определили как массу воды в кубическом сантиметре при уровне температуры, близкой к нулевому (плавления льда).
Но, как оказалось, Земля вовсе не является идеальным шаром, а вода в кубике может иметь самые разные свойства, если в ней есть примеси. Поэтому размеры этих величин в разных точках планеты немного отличались друг от друга.
В начале 19 века в дело вступили немцы во главе с математиком Карлом Гауссом. Он предложил обновить систему мер «сантиметр-грамм-секунда», и с тех пор метрические единицы пошли в мир, науку и были признаны международным сообществом, образовалась международная система единиц физических величин.
Длину меридиана и массу кубика воды решили заменить эталонами, которые хранились в Бюро мер и весов в Париже, с раздачей копий по странам – участницам метрической конвенции.
Килограмм, например, выглядел цилиндром из сплава платины и иридия, что в итоге тоже не стало идеальным решением.
Международная система единиц физических величин SI была образована в 1960 году. Сначала в нее входили шесть основных величин: метры и длина, килограммы и масса, время в секундах, сила тока в амперах, термодинамическая температура в кельвинах и сила света в канделах. Через десять лет к ним добавилась еще одна – количество вещества, измеряемое в молях.
Важно знать, что все остальные единицы измерения физических величин международной системы считаются производными от основных, то есть могут быть вычислены математически с помощью основных величин системы СИ.
Прочь от эталонов
Физические эталоны оказались не самой надежной системой измерений. Сам эталон килограмма и его копии по странам периодически сверяют друг с другом. Сверки показывают изменения масс этих эталонов, что происходит по разным причинам: пыль при поверке, взаимодействие с подставкой или что-то другое. Ученые заметили эти неприятные нюансы давно. Наступило время пересмотра параметров единиц физических величин международной системы в метрологии.
Поэтому некоторые определения величин постепенно менялись: ученые старались уйти от физических эталонов, которые так или иначе со временем меняли свои параметры. Лучшим способом является выведение величин через неизменные свойства, как, например, скорость света или изменения в структуре атомов.
Накануне революции в системе СИ
Принципиальные технологические изменения в международной системе единиц физических величин проводятся через голосование членов Международного бюро мер и весов на годовой конференции. При положительном решении изменения вступают в силу через несколько месяцев.
Все это чрезвычайно важно для ученых, в чьих исследованиях и экспериментах нужна предельная точность измерений и формулировок.
Новые эталоны образца 2018 года помогут достичь высочайшего уровня точности в любых измерениях в любом месте, времени и масштабе. И все это без каких-либо потерь в точности.
Переопределение величин в системе СИ
Оно касается четырех из семи действующих основных физических величин. Было решено переопределить следующие величины с единицами измерений:
В отношении остальных трех величин будет изменена формулировка определений, но их суть останется неизменной:
Изменения с ампером
То, что представляет собой ампер как единица физических величин в международной системе СИ сегодня, было предложено еще в 1946 году. Определение было привязано к силе тока между двумя проводниками в вакууме на расстоянии одного метра с уточнением всех нюансов этого сооружения. Неточность и громоздкость измерения – вот две главных характеристики этого определения с сегодняшней точки зрения.
В новом определении ампер – это электрический ток, равный потоку фиксированного числа электрических зарядов в секунду. Единица выражается в зарядах электрона.
Для определения обновленного ампера нужен всего один инструмент – так называемый одноэлектронный насос, который способен перемещать электроны.
Новый моль и чистота кремния 99,9998 %
Старое определение моля связано с количеством вещества, равным числу атомов в изотопе углерода с массой 0,012 кг.
В новой версии это количество вещества, которое содержится в точно определенном количестве специфицированных структурных единиц. Эти единицы выражаются с помощью постоянной Авогадро.
С числом Авогадро тоже немало забот. Для его вычисления было решено создать сферу из кремния-28. Данный изотоп кремния отличается своей точной до идеальности кристаллической решеткой. Поэтому в нем можно точно подсчитать число атомов с помощью лазерной системы, измеряющей диаметр сферы.
Можно, конечно, возразить в том, что нет принципиальной разница между сферой из кремния-28 и нынешним сплавом из платины и иридия. И то, и другое вещество теряет атомы во времени. Теряет, верно. Но кремний-28 теряет их с предсказуемой скоростью, поэтому в эталон будут постоянно вноситься коррективы.
Самый чистый кремний-28 для сферы получили совсем недавно в США. Его чистота составляет 99,9998 %.
А теперь кельвин
Кельвин является одной из единиц физических величин в международной системе и служит для измерения уровня термодинамической температуры. «По-старому» он равен 1/273,16 части температуры тройной точки воды. Тройная точка воды – чрезвычайно интересная составляющая. Это уровень температуры и давления, при котором вода находится сразу в трех состояниях – «пар, лед и вода».
Определение «хромало на обе ноги» по следующей причине: величина кельвина зависит в первую очередь от состава воды с теоретически известным соотношением изотопов. Но на практике получить воду с такими характеристиками было невозможно.
Новый кельвин будет определяться так: один кельвин равен изменению тепловой энергии на 1,4 × 10−23дж. Единицы выражаются с помощью постоянной Больцмана. Теперь уровень температуры можно будет измерять с помощью фиксации скорости звука в газовой сфере.
Килограмм без эталона
Мы уже знаем, что в Париже находится эталон из платины с иридием, который так или иначе изменил свой вес за время использования в метрологии и системе единиц физических величин.
Новое определение килограмма звучит так: один килограмм выражается в величине постоянной Планка, разделенной на 6,63 × 10−34 м2·с−1.
Измерение массы теперь можно производить на «ваттовых» весах. Пусть это название не вводит вас в заблуждение, это не привычные весы, а электроэнергия, которой хватит, чтобы приподнять предмет, лежащий на другой чаше весов.
Изменения в принципах построения единиц физических величин и их системе в целом нужны, прежде всего, в теоретических областях науки. Главными факторами в обновленной системе теперь являются естественные постоянные величины.
Это закономерное завершение многолетней деятельности международной группы серьезных ученых, чьи усилия в течение долгого времени были направлены на поиск идеальных измерений и определений единиц на основе законов фундаментальной физики.
Системы единиц физических величин: понятие
В мире существовало и существует до сих пор множество различных систем измерения величин. Они служат для того, чтобы люди могли обмениваться различной информацией, например, при совершении сделок, назначении препаратов или разработке руководств к использованию техники. Для того чтобы не возникало путаницы, была разработана Интернациональная система измерения физических величин.
Что такое система измерения физических величин?
Такое понятие, как система единиц физических величин, или просто система СИ, часто может встретиться не только на школьных уроках физики и химии, но и в повседневной жизни. В современном мире люди как никогда нуждаются в том, чтобы определенная информация – например, время, вес, объем – была выражена наиболее объективно и структурировано. Именно для этого и была создана единая система измерений – совокупность официально принятых единиц измерений, рекомендуемых для использования в быту и науке.
Какие системы измерения существовали до появления системы СИ
Вам будет интересно: Античный Рим: история, культура, религия
Конечно, потребность в мерах существовала у человека всегда, однако, как правило, эти меры не были официальными, определялись через подручные материалы. А значит, не имели эталона и могли различаться от случая к случаю.
Ярким примером может служить принятая на Руси система мер длины. Пядь, локоть, аршин, сажень – все эти единицы изначально были привязаны к частям тела – ладони, предплечью, расстоянию между раскинутыми руками. Конечно, в результате конечные измерения были неточными. Впоследствии государство прилагало усилия, чтобы стандартизировать эту систему измерения величин, но она все равно оставалась неидеальной.
В других странах существовали свои системы измерения физических величин. Например, в Европе была распространена английская система мер – футы, дюймы, мили и др.
Зачем нужна система СИ?
В XVIII-XIX веках процесс глобализации стал активным. Все больше стран начали устанавливать международные контакты. Кроме того, своего апогея достигла научно-техническая революция. Ученые по всему миру не могли эффективно обмениваться результатами своих научных изысканий из-за того, что они пользовались разными системами измерения физических величин. Во многом из-за таких нарушений связей внутри мирового научного сообщества многие физические и химические законы «открывались» несколько раз разными учеными, что сильно тормозило развитие науки и техники.
Таким образом, сформировалась потребность в единой системе измерения физических единиц, которая бы не только позволила ученым по всему миру сверять результаты своих трудов, но и оптимизировала процесс мировой торговли.
История возникновения Международной системы измерения
Для того чтобы структурировать физические величины и измерение физических величин, система единиц, единая для всего мирового сообщества, стала необходима. Однако создать такую систему, которая бы отвечала всем требованиям и была наиболее объективной, – это действительно трудная задача. Основой будущей системы СИ стала метрическая система, которая получила свое распространение в XVIII веке после Великой французской революции.
Точкой отсчета, с которой началось развитие и совершенствование Интернациональной системы измерения физических величин, можно считать 22 июня 1799 года. Именно в этот день были утверждены первые эталоны – метр и килограмм. Они были выполнены из платины.
Несмотря на это, официально Международная система единиц была принята только в 1960 году на 1-й генеральной конференции по мерам и весам. В нее были включены 6 основных единиц измерения физических величин: секунда (время), метр (длина), килограмм (масса), кельвин (термодинамическая температура), ампер (сила тока), кандела (сила света).
В 1964 году к ним была добавлена седьмая величина – моль, которой измеряется количество вещества в химии.
Кроме того, существуют также производные единицы, которые могут быть выражены через основные с помощью простейших алгебраических действий.
Основные единицы измерения в системе СИ
Так как основные единицы системы физических величин должны были быть максимально объективными и не зависеть от внешних условий, таких как давление, температура, расстояние от экватора и другие, то к формулированию их определений и эталонов нужно было отнестись фундаментально.
Рассмотрим каждую из основных единиц системы измерения физических величин подробнее.
Приставки, принятые в системе СИ и что они означают
Для удобства использования основных единиц физических величин в системе СИ на практике был принят перечень универсальных приставок, с помощью которых образуются дробные и кратные единицы.
Производные единицы
Очевидно, что существует намного больше семи физических величин, а значит, нужны и единицы, в которых эти величины должны измеряться. Для каждой новой величины выводится новая единица, которая может быть выражена через основные с помощью простейших алгебраических действий, например деления или умножения.
Интересно, что, как правило, производные единицы называются в честь великих ученых или исторических лиц. К примеру, единица измерения работы – Джоуль или единица измерения индуктивности – Генри. Существует множество производных единиц – всего более двадцати.
Внесистемные единицы
Несмотря на широкое распространение и повсеместное применение единиц системы физических величин СИ, во многих отраслях все еще применяются на практике внесистемные единицы измерения. Например, в судоходстве – морская миля, в ювелирном деле – карат. В повседневной жизни нам известны такие внесистемные единицы, как сутки, процент, диоптрия, литр и многие другие.
Нужно помнить, что, несмотря на их привычность, при решении физических или химических задач внесистемные единицы нужно обязательно переводить в единицы измерения физических величин в системе СИ.