что такое код белка
Биология. 11 класс
§ 23. Генетический код и его свойства
Как вы знаете, признаки и свойства каждого организма определяются прежде всего белками, которые синтезируются в его клетках. Белки выполняют самые разнообразные функции (вспомните какие), обеспечивая тем самым протекание процессов жизнедеятельности. Можно сказать, что именно от этих биополимеров в первую очередь и зависит существование организма. Однако время функционирования белков, как и многих других биомолекул, весьма ограничено. Поэтому синтез белков в организме должен осуществляться непрерывно. Этот процесс протекает во всех клетках одноклеточных и многоклеточных организмов.
Вам также известно, что хранителем наследственной (генетической) информации, т. е. информации о первичной структуре белков, является ДНК. Участок молекулы ДНК, содержащий информацию о первичной структуре одного белка, получил название ген. Кроме того, генами называют участки ДНК, хранящие информацию о строении молекул рРНК и тРНК.
В биосинтезе белков, который осуществляется в рибосомах, ДНК прямого участия не принимает. Передача генетической информации, содержащейся в ДНК, к месту синтеза белка происходит с помощью посредника. Этим посредником является матричная (информационная) РНК (мРНК, иРНК), которая синтезируется на одной из цепей молекулы ДНК по принципу комплементарности.
В молекулах ДНК и мРНК информация о первичной структуре белков «записана» в виде последовательности нуклеотидов. Сами же белки синтезируются из аминокислот. Значит, в природе существует особая система кодирования, на основании которой последовательность нуклеотидов расшифровывается в виде последовательности аминокислот молекул белков. Этот «шифр» называется генетическим кодом. Таким образом, генетический код — это система записи информации о первичной структуре белков в виде последовательности нуклеотидов ДНК (мРНК).
Генетический код обладает следующими свойствами.
1. Код является триплетным. Это значит, что каждая аминокислота кодируется триплетом (кодоном) — сочетанием трех последовательно расположенных нуклеотидов. В состав молекул ДНК и РНК входит по 4 типа нуклеотидов. Если бы за определенную аминокислоту «отвечал» один нуклеотид, можно было бы закодировать только 4 из 20 белокобразующих аминокислот. Дублетов (по два нуклеотида) хватило бы лишь на 4 2 = 16 аминокислот. Количество возможных триплетов (сочетаний трех нуклеотидов) составляет 4 3 = 64. Этого с избытком хватает для кодирования всех 20 видов аминокислот (табл. 23.1).
Обратите внимание, что 3 из 64 кодонов (в молекулах мРНК — УАА, УАГ и УГА) не кодируют аминокислоты. Это так называемые стоп-кодоны *или нонсенс-кодоны (от англ. nonsense — бессмыслица)*, они служат сигналом окончания синтеза белка. *Остальные триплеты называются смысловыми.*
* Генетический код расшифровали американские биохимики Р. Холли, Х. Г. Корана и М. Ниренберг в середине прошлого века. Работа стартовала в 1961 г. В бесклеточные системы, содержащие все необходимые компоненты для синтеза белка (рибосомы, аминокислоты, тРНК и др.), ученые сначала вводили искусственно синтезированные мРНК, состоящие только из одного типа нуклеотидов. Было выяснено, что в присутствии, например, полицитидиловой мРНК (ЦЦЦЦЦЦ. ) синтезируется полипептид, состоящий только из остатков аминокислоты пролина, в присутствии полиуридиловой (УУУУУУ. ) — из фенилаланина. Стало понятно, что кодону ЦЦЦ соответствует пролин, а триплет УУУ кодирует фенилаланин. К 1965 г., благодаря использованию искусственно синтезированных молекул мРНК с известными повторяющимися последовательностями нуклеотидов, удалось расшифровать все остальные триплеты. В 1968 г. это открытие было удостоено Нобелевской премии.*
2. Код однозначен — каждый триплет кодирует только одну аминокислоту.
3. Как уже отмечалось, число триплетов превышает количество кодируемых аминокислот. Поэтому генетический код является избыточным (вырожденным) — одна и та же аминокислота может кодироваться разными триплетами. Например, в мРНК цистеин (Цис) может быть закодирован триплетом УГУ или УГЦ, треонин (Тре) — АЦУ, АЦЦ, АЦА или АЦГ. Некоторые аминокислоты, например лейцин (Лей), кодируются шестью различными триплетами, в то же время метионину (Мет) и триптофану (Трп) соответствует только по одному кодону (проверьте по таблице генетического кода).
4. Код не перекрывается — один и тот же нуклеотид не может одновременно входить в состав двух соседних триплетов.
5. Код непрерывен. В полинуклеотидной цепи нуклеотиды располагаются непрерывно и соседние триплеты ничем не отделены друг от друга. Это значит, что фактически деление на триплеты условно — все зависит от того, с какого именно нуклеотида начинается их считывание. Поэтому в клетках считывание информации, содержащейся в генах, всегда начинается со строго определенного нуклеотида.
Если в составе гена происходит изменение количества нуклеотидов (их выпадение или вставка) на число, не кратное трем, наблюдается так называемый сдвиг рамки считывания (рис. 23.1). Это прив одит к существенному изменению последовательности аминокислот в белке, который кодируется измененным геном. В некоторых случаях сдвиг рамки считывания приводит к возникновению стоп-кодонов, из-за чего синтез белка обрывается.
*Суть происходящего при сдвиге рамки считывания можно понять на следующем примере. Прочитайте предложение, составленное из трехбуквенных слов (аналогично триплетам):
ЖИЛ БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ.
В этом предложении заключен определенный смысл, понять который можно и без знаков препинания. Выпадение одной буквы аналогично выпадению одного нуклеотида. Оно приводит к изменению порядка считывания и потере смысла:
ЖЛБ ЫЛК ОТТ ИХБ ЫЛС ЕРМ ИЛМ НЕТ ОТК ОТ — выпадение второй буквы.
То же самое произошло бы и после вставки лишней буквы. В случае замены одной буквы либо при изменении их количества на три смысл предложения меняется не столь значительно. Например:
ЖИВ БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ — замена третьей буквы;
БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ — выпадение первых трех букв.
Однако смысл предложения (в нашей аналогии — первичная структура белка) во многом зависит от положения измененных букв (нуклеотидов). Так, смысл может существенно исказиться:
ЖИЛ БОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ — выпадение пятой, шестой и седьмой букв.
Аналогичная ситуация наблюдается и с белками. В зависимости от расположения замененной (утраченной, добавленной) аминокислоты молекула белка может сохранить пространственную конфигурацию и функции, частично изменить их или же полностью утратить свои исходные характеристики.*
Как уже отмечалось, правильное считывание генетической информации обеспечивается только тогда, когда оно начинается со строго определенной позиции. У эукариот стартовым кодоном молекулы мРНК является триплет АУГ. Именно с него и начинается считывание.
6. Код универсален — у всех живых организмов одним и тем же триплетам соответствуют одни и те же аминокислоты. Иными словами, у всех организмов генетический код расшифровывается одинаково (за редким исключением). Это свидетельствует о единстве происхождения живых организмов.
*Некоторые вариации генетического кода обнаружены у бактерий, инфузорий, дрожжей, в коде митохондриальной ДНК и т. д. Например, у бактерий триплет мРНК ГУГ может играть роль стартового кодона, а у эукариот он предназначен только для кодирования аминокислоты валин. В митохондриях млекопитающих триплет УГА кодирует триптофан, в то время как в матричной РНК, синтезированной в ядре клетки, он служит стоп-кодоном. И наоборот, в коде митохондрий триплеты АГА и АГГ являются сигналами окончания синтеза белка, а в «основной версии» генетического кода им соответствует аминокислота аргинин.*
Биосинтез белка и генетический код: транскрипция и трансляция белка
Биосинтез белка и генетический код
Биосинтез белка — это ферментативный процесс синтеза белков в клетке, в котором принимают участие три структурных элемента клетки: ядро, цитоплазма и рибосомы.
Молекулы ДНК в ядре клетки сохраняют информацию обо всех белках, синтезирующихся в этой клетке. Эта информация находится в зашифрованном виде — шифруется 4-буквенным кодом.
Генетический код представляет собой последовательность расположения нуклеотидов в молекуле ДНК, определяющей последовательность аминокислот в молекуле белка.
Генетический код обладает следующими свойствами:
К примеру, такая кислота как цистеин кодируется при помощи триплета А-Ц-А. В отношении валина — это Ц-А-А.
Если взять аминокислоту тирозин, то она кодируется при помощи двух триплетов.
УАГ, УАА, УГА — три несодержательных кодона, не кодирующие аминокислоты. Предполагается, что они выступают в качестве стоп-сигналов, благодаря которым происходит разделение генов в молекуле ДНК.
Ген — участок молекулы ДНК, для которого свойственна определенная последовательность нуклеотидов. Ген определяет синтез одной полипептидной цепи.
Этапы биосинтеза белка: транскрипция и трансляция
Транскрипция белка
Этапы биосинтеза белка основаны на двух процессах: транскрипции и трансляции.
Самый популярный вопрос в рамках этой темы — где происходит синтез белка. И только потом разбираются с этапами синтеза белка (и схемой биосинтеза белка).
Любая белковая молекула имеет структуру, закодированную в ДНК. В ее синтезе эта ДНК не принимает непосредственного участия. Роль белковой молекулы — роль матрицы для синтеза РНК.
Далее охарактеризуем функции различных видов РНК в биосинтезе белка.
Где и как происходит биосинтез белка? Синтез белка происходит в, а точнее, синтез белка происходит на рибосомах — в основном они размещаются в цитоплазме. Поэтому, чтобы генетическая информация из ДНК передалась к месту, где белок синтезируется, необходим посредник.
Роль такого посредника играет иРНК.
Первый этап биосинтеза белка — транскрипция.
Транскрипция (переписывание) — процесс синтеза молекулы иРНК на одной цепи молекулы ДНК, в основе которого лежит принцип комплементарности.
Биосинтез белка происходит в рибосомах — с этим мы разобрались.
Где происходит транскрипция? Этот процесс осуществляется в ядре клетки.
Транскрипция происходит в одно и то же время не на всей молекуле ДНК — для этого достаточно одного небольшого участка, отвечающего за определенный ген. Часть двойной спирали ДНК раскручивается, и короткий участок одной из цепей оголяется. Роль матрицы в синтезе молекул иРНК выполняет этот же участок.
Далее в дело вступает фермент РНК-полимераза, который движется вдоль этой цепи. Он соединяет нуклеотиды в цепь иРНК, тем самым удлиняя ее.
Процесс транскрипции осуществляется одновременно на нескольких генах одной хромосомы и на генах разных хромосом.
иРНК, образованная в результате, имеет последовательность нуклеотидов — точную копию последовательности нуклеотидов на матрице.
Если молекула ДНК содержит азотистое основание цитозин, то иРНК — гуанин и наоборот. Комплементарная пара ДНК — аденин-тимин, РНК — аденин-урацил.
тРНК и рРНК (другие типы РНК) синтезируются на специальных генах.
Специальные триплеты строго фиксируют начало и конец синтеза всех типов РНК на матрице ДНК. Они же осуществляют контроль запуска и остановку синтеза (инициирующие и терминальные). Между генами они играют роль «разделительных знаков».
Аминокислоты соединяются с тРНК в цитоплазме. По своей форме молекула тРНК — лист клевера. Вверху этого листа находится антикодон: триплет нуклеотидов, отвечающий за кодировку аминокислоты (ее эта тРНК и переносит).
Количество тРНК определяется количеством аминокислот.
Так как много аминокислот кодируется при помощи нескольких триплетов, то количество тРНК превышает 20. Сегодня известно примерно 60 тРНК.
Ферменты — связующее звено между аминокислотами и тРНК. С помощью молекул тРНК осуществляется транспортировка аминокислот к рибосомам.
Кратко о трансляции в биологии
Что такое трансляция в биологии и как связан с трансляцией биосинтез белка?
В биологии трансляция — это процесс реализации информации о структуре белка, представленной в иРНК последовательностью нуклеотидов, как последовательности аминокислот в синтезируемой молекуле белка.
Как и где происходит биосинтез белка в рамках трансляции и какова схема синтеза белка?
Первый этап трансляции белка — присоединение иРНК к рибосоме. Далее трансляция в биологии — это нанизывание первой рибосомы, синтезирующей белок, на иРНК. Далее трансляция синтеза белка основывается на нанизывании новой рибосомы — по мере того, как предыдущая рибосома продвигается на конец иРНК, который освобождается.
Одна иРНК может одновременно вмещать свыше 80 рибосом, синтезирующих один и тот же белок.
Полирибосома или полисома — группа рибосом, соединенных с одной иРНК,
Информация, записанная на иРНК (а не рибосома), определяет вид синтезируемого белка. Разные белки могут синтезироваться одной и той же рибосомой. Рибосома отделяется от иРНК после того, как синтез белка завершается. Заключительный этап трансляции — это синтез белка или его поступление в эндоплазматическую сеть.
Рибосома включает две субъединицы: малую и большую. Присоединение молекулы иРНК происходит к малой субъединице. Место, в котором рибосома и иРНК контактируют, содержит 6 нуклеотидов (2 триплета). Из цитоплазмы к одному из триплетов постоянно подходят тРНК с различными аминокислотами. Своим антикодоном они касаются кодона иРНК. В случае комплементарности кодона и антикодона, возникает пептидная связь: она образуется между аминокислотой уже синтезированной части белка и аминокислотой, доставляемой тРНК.
Фермент синтетазы участвует в соединении аминокислот в молекулу белка. После отдачи аминокислоты молекула тРНК переходит в цитоплазму, в результате чего рибосома перемещается на один триплет нуклеотидов. Таким образом, происходит последовательный синтез полипептидной цепи. Этот процесс длится до момента достижения рибосомой одного из трех терминирующих кодонов: УАА, УАГ или УГА. Как только это происходит, синтез белка останавливается.
Последовательность того, как аминокислоты включаются в цепь белка, определяется последовательностью кодонов иРНК. В каналы эндоплазматического ретикулюма поступают синтезированные белки. Синтез одной молекулы белка в клетке происходит в течение 1-2 минут.
Схема синтеза белка выглядит следующим образом:
Из схемы биосинтеза белка выше вы можете понять, на чем осуществляется синтез белков, как происходит биосинтез белка, и что кроется за трансляцией и транскрипцией.
Также предлагаем изучить таблицу биосинтеза белка. Здесь описано, как осуществляется синтез белков в клетке, описываются кратко транскрипция и трансляция (этапы синтеза белка).
Таблица биосинтеза белка:
Из таблицы становится ясно, как проходит синтез белка, какие основные этапы синтеза белка, какова роль транскрипции в биосинтезе белка, где происходит синтез белков (место), а также кратко описаны стадии биосинтеза белка.
Таким образом мы охарактеризовали функции различных видов РНК в биосинтезе белков. На примере трансляции и транскрипции мы рассмотрели основные этапы биосинтеза белка.
Это информация о синтезе (биосинтезе) белка кратко.
Генетический код
Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.
В ДНК используется четыре азотистых основания — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.
Белки практически всех живых организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.
Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке.
Содержание
Свойства
Таблицы соответствия кодонов мРНК и аминокислот
2-е основание | |||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
U | C | A | G | ||||||||||||||||||||||||||||||||||||||||||
1-е основание | U |
Ala/A | GCU, GCC, GCA, GCG | Leu/L | UUA, UUG, CUU, CUC, CUA, CUG |
---|---|---|---|
Arg/R | CGU, CGC, CGA, CGG, AGA, AGG | Lys/K | AAA, AAG |
Asn/N | AAU, AAC | Met/M | AUG |
Asp/D | GAU, GAC | Phe/F | UUU, UUC |
Cys/C | UGU, UGC | Pro/P | CCU, CCC, CCA, CCG |
Gln/Q | CAA, CAG | Ser/S | UCU, UCC, UCA, UCG, AGU, AGC |
Glu/E | GAA, GAG | Thr/T | ACU, ACC, ACA, ACG |
Gly/G | GGU, GGC, GGA, GGG | Trp/W | UGG |
His/H | CAU, CAC | Tyr/Y | UAU, UAC |
Ile/I | AUU, AUC, AUA | Val/V | GUU, GUC, GUA, GUG |
START | AUG | STOP | UAG, UGA, UAA |
Вариации стандартного генетического кода
В некоторых белках нестандартные аминокислоты, такие как селеноцистеин и пирролизин, вставляются рибосомой, прочитывающей стоп-кодон, что зависит от последовательностей в мРНК. Селеноцистеин сейчас рассматривается в качестве 21-й, а пирролизин 22-й аминокислот, входящих в состав белков.
Несмотря на эти исключения, у всех живых организмов генетический код имеет общие черты: кодон состоят из трёх нуклеотидов, где два первых являются определяющими, кодоны транслируются тРНК и рибосомами в последовательность аминокислот.
История представлений о генетическом коде
Тем не менее в начале 60-х годов XX века новые данные обнаружили несостоятельность гипотезы «кода без запятых». Тогда эксперименты показали, что кодоны, считавшиеся Криком бессмысленными, могут провоцировать белковый синтез в пробирке, и к 1965 году был установлен смысл всех 64 триплетов. Оказалось, что некоторые кодоны просто-напросто избыточны, то есть целый ряд аминокислот кодируется двумя, четырьмя или даже шестью триплетами.
Что такое генетический код и как он работает?
Содержание:
Независимо от того, сколько морфологического разнообразия мы, живые существа, представляем, все мы объединены под одной крышей: нашей основной функциональной единицей является клетка. Если у живого существа есть клетка, на которой основана вся его морфологическая структура, она известна как одноклеточная (случай простейших или бактерий), тогда как те из нас, у кого их несколько (от нескольких сотен до сотен миллиардов), являются многоклеточными существами.
Таким образом, каждый организм начинается с клетки, и поэтому некоторые молекулярные объекты, такие как вирусы, не считаются строго «живыми» с биологической точки зрения. В свою очередь, исследования показали, что каждая клетка содержит колоссальные 42 миллиона белковых молекул. Поэтому неудивительно, что, по оценкам, 50% веса сухих живых тканей состоят исключительно из белков.
Почему мы предоставляем все эти, казалось бы, несвязанные данные? Сегодня мы приходим, чтобы разгадать секрет жизни: генетический код. Каким бы загадочным оно ни казалось на первый взгляд, мы заверяем вас, что вы сразу поймете эту концепцию. Речь идет о клетках, белках и ДНК. Останься, чтобы узнать.
Что такое генетический код?
Характеристики генетического кода были установлены в 1961 году Фрэнсисом Криком, Сиднеем Бреннером и другими сотрудниками молекулярных биологов. Этот термин основан на ряде предпосылок, но сначала мы должны уточнить некоторые термины, чтобы понять их. Действуй:
Основы генетического кода
Когда мы разберемся с этими основными терминами, пришло время изучить основные особенности генетического кода, установленные Криком и его коллегами. Это следующие:
Раскрытие генетического кода
У нас уже есть терминологическая база и теоретические основы. Пришло время применить их на практике. Прежде всего, мы вам скажем, что Каждый нуклеотид получает название на основе буквы, что обусловлено азотистым основанием, которое он представляет.. Азотистыми основаниями являются следующие: аденин (A), цитозин (C), гуанин (G), тимин (T) и урацил (U). Аденин, цитозин и гуанин универсальны, тимин уникален для ДНК, а урацил уникален для РНК. Если вы видите это, как вы думаете, что это значит?:
Пора восстановить условия, описанные выше. CCT является частью цепи ДНК, то есть 3 разных нуклеотидов: один с основанием цитозина, другой с основанием цитозина и третий с основанием тимина. Во втором случае, выделенном жирным шрифтом, мы имеем дело с кодоном, поскольку это «тадуцидируемая» генетическая информация ДНК (отсюда урацил там, где раньше был тимин) в цепи РНК.
Таким образом, мы можем утверждать, что CCU является кодоном, который кодирует аминокислоту пролин. Как мы уже говорили, генетический код вырожден. Таким образом, аминокислота пролин также кодируется другими кодонами с другими нуклеотидами: CCC, CCA, CCG. Таким образом, аминокислота пролин кодируется всего 4 кодонами или триплетами.
Следует отметить, что для кодирования аминокислоты необходимы не 4 кодона, а то, что любой из них действителен. Обычно, незаменимые аминокислоты кодируются 2,3,4 или 6 различными кодонами, кроме метионина и триптофана которые отвечают только на один.
Почему так много сложностей?
Сделаем расчеты. Если бы каждый кодон кодировался только одним нуклеотидом, могли бы образоваться только 4 разные аминокислоты. Это сделало бы синтез белка невозможным, поскольку в целом каждый белок состоит примерно из 100-300 аминокислот. В генетический код входит всего 20 аминокислот.Но они могут быть расположены по-разному на «конвейере», давая начало различным белкам, присутствующим в наших тканях.
С другой стороны, если бы каждый кодон состоял из двух нуклеотидов, общее количество возможных «диплетов» было бы 16. Мы все еще далеки от цели. Теперь, если бы каждый кодон состоял из трех нуклеотидов (как и в случае), количество возможных перестановок увеличилось бы до 64. Принимая во внимание, что существует 20 незаменимых аминокислот, с 64 кодонами это дает для кодирования каждой из них и, кроме того, предлагать разные варианты в каждом случае.
Прикладной вид
Нам не хватает места, но действительно сложно сконцентрировать столько информации в нескольких строках. Следуйте за нами на следующей диаграмме, потому что мы обещаем вам, что закрыть весь этот терминологический конгломерат намного проще, чем кажется:
CCT (ДНК) → CCU (РНК) → пролин (рибосома)
Эта небольшая диаграмма выражает следующее: клеточная ДНК содержит 3 нуклеотида CCT, но она не может «выражать» генетическую информацию, поскольку изолирована от клеточного аппарата в своем ядре.. По этой причине фермент РНК-полимераза отвечает за ТРАНСКРИБИРОВАНИЕ (процесс, известный как транскрипция) нуклеотидов ДНК в нуклеотиды РНК, которые образуют информационную РНК.
Теперь у нас есть кодон CCU в информационной РНК, который будет перемещаться из ядра через поры в цитозоль, где расположены рибосомы. Подводя итог, можно сказать, что информационная РНК передает эту информацию рибосоме, который «понимает», что аминокислота пролин должна быть добавлена к уже построенной аминокислотной последовательности, чтобы дать начало конкретному белку.
Как мы уже говорили ранее, белок состоит примерно из 100-300 аминокислот. Таким образом, любой белок, образованный из порядка 300 аминокислот, будет кодироваться в общей сложности 900 триплетами (300×3) или, если хотите, 2700 нуклеотидами (300x3x3). Теперь представьте себе каждую букву в каждом из 2700 нуклеотидов, что-то вроде: AAAUCCCCGGUGAUUUAUAAGG (. ) Именно это расположение, это скопление букв и является генетическим кодом. Проще, чем казалось сначала, правда?
Резюме
Если вы спросите любого биолога, интересующегося молекулярной биологией, о генетическом коде, то наверняка поговорите около 4-5 часов. Поистине увлекательно знать, что секрет жизни, каким бы нереальным он ни казался, заключен в определенной последовательности «букв».
Так что, геном любого живого существа можно отобразить с помощью этих 4 букв. Например, согласно проекту «Геном человека», вся генетическая информация нашего вида состоит из 3 000 миллионов пар оснований (нуклеотидов), которые находятся на 23 парах хромосом в ядрах всех наших клеток. Конечно, какими бы разными ни были живые существа, у всех нас есть общий «язык».
Интервью с Идойей Кастро: ОКР с точки зрения психолога
- Topaz labs что это
- Что принято понимать под великой депрессией чем она характеризовалась