что такое код символа в информатике

Кодирование информации

Информация бывает разного вида, например:

В разных отраслях науки, культуры и техники разработаны специальные формы для записи информации.

Код — это группа обозначений, которую можно использовать для отображения информации.

что такое код символа в информатике. Смотреть фото что такое код символа в информатике. Смотреть картинку что такое код символа в информатике. Картинка про что такое код символа в информатике. Фото что такое код символа в информатике

Примеры кодирования информации:

— для отображения звуков русского алфавита используют буквы (АБВГДЕЁЖ…ЭЮЯ);

— для отображения чисел используют цифры (0123456789);

— звуки записывают нотами и другими символами;

— слепые используют азбуку Брайля, где буква состоит из шести элементов: дырочек и бугорков.

Надо учитывать, что не зная принципы кодирования информации, один и тот же код, можно понять по-разному, например, число 300522005 можно посчитать за число, номер телефона или за количество населения.

что такое код символа в информатике. Смотреть фото что такое код символа в информатике. Смотреть картинку что такое код символа в информатике. Картинка про что такое код символа в информатике. Фото что такое код символа в информатике

0 — сигнала нет (нету напряжения или не течёт ток);

1 — сигнал есть (есть напряжение или течёт ток).

что такое код символа в информатике. Смотреть фото что такое код символа в информатике. Смотреть картинку что такое код символа в информатике. Картинка про что такое код символа в информатике. Фото что такое код символа в информатике

Создание кода.

Одним битов можно кодировать два состояния: 0 и 1 (да и нет, чёрный и белый). При увеличении количества битов на один получится в два раза больше кодов.

Пример:

Два бита создают 4 разных кода: 00, 01, 10 и 11;

три бита создают 8 разных кодов: 000, 001, 010, 011, 100, 101, 110, и 111.

Кодирование различных видов информации

Кодирование текстов

При кодировании текста каждому символу присваивается какое-то значение, например, порядковый номер.

Первый популярный компьютерный стандарт кодирования текста имеет название ASCII (American Standart Code for Information Interchange), в котором для кодирования каждого символа используются 7 бит.

7-ю битами можно закодировать 128 символов: большие и маленькие латинские буквы, цифры, знаки препинания, а так же специальные символы, например, «§».

Стандарту создавали разные варианты, дополняя код до 8 бит (256 символов), чтобы можно было кодировать национальные символы, например, латышскую букву ā.

Но 256 символов не хватило, чтобы кодировать все символы разных алфавитов, поэтому создали новые стандарты. Один из самых популярных в наше время, это UNICODE. В котором каждый символ кодируют 2-мя байтами, получается в итоге 62536 разных кодов.

Кодирования графических данных

Почти все созданные и обработанные изображения, хранящиеся в компьютере, можно поделить на две группы:

Для кодирования не цветных изображений обычно используют 256 оттенков серого, начиная от белого, заканчивая чёрным. Для кодирования всех цветов надо 8 битов (1 байт).

Для кодирования цветных изображений обычно используют три цвета: красный, зелёный и синий. Цветной тон получается при смешивании этих трёх цветов.

что такое код символа в информатике. Смотреть фото что такое код символа в информатике. Смотреть картинку что такое код символа в информатике. Картинка про что такое код символа в информатике. Фото что такое код символа в информатике

Размер изображения можно посчитать, умножив его ширину на длину в пикселях. Например, изображение размером 200⋅100 пикселей, занимает 60000 байт.

Кодирование звуков

Звуки появляются из-за колебаний воздуха. У звука есть две величины:

амплитуда колебания, которая указывает на громкость звука;

частота колебания, которая указывает на тональность звука.

Звук можно переделать в электрический сигнал, например, микрофоном.

Звук кодируют, после точного интервала времени измеряя размер сигнала и присваивая ему бинарную величину. Чем чаще проводятся эти измерения, тем лучше качество звука.

Пример:

На одном компакт диске, с объемом 700 Мб, может вместиться 80 минут звука CD качества.

Кодирование видео

Фильм состоит из кадров, которые быстро меняются. Кодированный фильм содержит информацию о размере кадра, используемых цветах, и количество кадров в секунду (обычно 30), как и способ записи звука — каждому кадру отдельно или всему фильму сразу.

Источник

Кодирование информации

Определение:
Кодирование информации (англ. information coding) — отображение данных на кодовые слова.

Обычно в процессе кодирования информация преобразуется из формы, удобной для непосредственного использования, в форму, удобную для передачи, хранения или автоматической обработки. В более узком смысле кодированием информации называют представление информации в виде кода. Средством кодирования служит таблица соответствия знаковых систем, которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем.

Содержание

Код [ править ]

Виды кодов [ править ]

Все вышеперечисленные коды являются однозначно декодируемыми — для такого кода любое слово, составленное из кодовых слов, можно декодировать только единственным способом.

Примеры кодов [ править ]

Однозначно декодируемый код [ править ]

Определение:
Однозначно декодируемый код (англ. uniquely decodable code) — код, в котором любое слово составленное из кодовых слов можно декодировать только единственным способом.

Пусть есть код заданный следующей кодовой таблицей:

[math]a_1 \rightarrow b_1[/math]

[math]a_2 \rightarrow b_2[/math]

[math]a_k \rightarrow b_k[/math]

Код является однозначно декодируемым, только тогда, когда для любых строк, составленных из кодовых слов, вида:

Всегда выполняются равенства:

Заметим, что если среди кодовых слов будут одинаковые, то однозначно декодировать этот код мы уже не сможем.

Префиксный код [ править ]

Определение:
Префиксный код (англ. prefix code) — код, в котором никакое кодовое слово не является префиксом какого-то другого кодового слова.

Предпочтение префиксным кодам отдается из-за того, что они упрощают декодирование. Поскольку никакое кодовое слово не выступает в роли префикса другого, кодовое слово, с которого начинается файл, определяется однозначно, как и все последующие кодовые слова.

Пример кодирования [ править ]

Закодируем строку [math]abacaba[/math] :

Такой код можно однозначно разбить на слова:

[math]00\ 01\ 00\ 1\ 00\ 01\ 00[/math]

Преимущества префиксных кодов [ править ]

Недостатки префиксных кодов [ править ]

Пример неудачного декодирования [ править ]

Предположим, что последовательность [math]abacaba[/math] из примера передалась неверно и стала:

[math]c^<**>(abacaba) = 0001001\ 1\ 00100[/math]

Разобьем ее согласно словарю:

[math] 00\ 01\ 00\ 1\ 1\ 00\ 1\ 00[/math]

[math]a\quad b\quad a\ c\ c\quad a\ c\ a[/math]

Полученная строка совпадает только в битах, которые находились до ошибочного, поэтому декодирование неравномерного кода, содержащего ошибки, может дать абсолютно неверные результаты.

Не префиксный однозначно декодируемый код [ править ]

Как уже было сказано, префиксный код всегда однозначно декодируем. Обратное в общем случае неверно:

Мы можем ее однозначно декодировать, так как знаем, что слева от двойки и справа от тройки всегда стоит единица.

После декодирования получаем: [math]abbca[/math]

Источник

Представление символов, таблицы кодировок

Содержание

Представление символов в вычислительных машинах [ править ]

В вычислительных машинах символы не могут храниться иначе, как в виде последовательностей бит (как и числа). Для передачи символа и его корректного отображения ему должна соответствовать уникальная последовательность нулей и единиц. Для этого были разработаны таблицы кодировок.

Таблицы кодировок [ править ]

На заре компьютерной эры на каждый символ было отведено по пять бит. Это было связано с малым количеством оперативной памяти на компьютерах тех лет. В эти [math]32[/math] символа входили только управляющие символы и строчные буквы английского алфавита.

С ростом производительности компьютеров стали появляться таблицы кодировок с большим количеством символов. Первой семибитной кодировкой стала ASCII7. В нее уже вошли прописные буквы английского алфавита, арабские цифры, знаки препинания. Затем на ее базе была разработана ASCII8, в которым уже стало возможным хранение [math]256[/math] символов: [math]128[/math] основных и еще столько же расширенных. Первая часть таблицы осталась без изменений, а вторая может иметь различные варианты (каждый имеет свой номер). Эта часть таблицы стала заполняться символами национальных алфавитов.

Но для многих языков (например, арабского, японского, китайского) [math]256[/math] символов недостаточно, поэтому развитие кодировок продолжалось, что привело к появлению UNICODE.

Кодировки стандарта ASCII [ править ]

Определение:
ASCII — таблицы кодировок, в которых содержатся основные символы (английский алфавит, цифры, знаки препинания, символы национальных алфавитов(свои для каждого региона), служебные символы) и длина кода каждого символа [math]n = 8[/math] бит.

Кодировки стандарта ASCII ( [math]8[/math] бит):

Структурные свойства таблицы [ править ]

Кодировки стандарта UNICODE [ править ]

Юникод или Уникод (англ. Unicode) — это промышленный стандарт обеспечивающий цифровое представление символов всех письменностей мира, и специальных символов.

Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода» (англ. Unicode Consortium, Unicode Inc.). Применение этого стандарта позволяет закодировать очень большое число символов из разных письменностей. Стандарт состоит из двух основных разделов: универсальный набор символов (англ. UCS, universal character set) и семейство кодировок (англ. UTF, Unicode transformation format). Универсальный набор символов задаёт однозначное соответствие символов кодам — элементам кодового пространства, представляющим неотрицательные целые числа.Семейство кодировок определяет машинное представление последовательности кодов UCS.

Коды в стандарте Unicode разделены на несколько областей. Область с кодами от U+0000 до U+007F содержит символы набора ASCII с соответствующими кодами. Далее расположены области знаков различных письменностей, знаки пунктуации и технические символы. Под символы кириллицы выделены области знаков с кодами от U+0400 до U+052F, от U+2DE0 до U+2DFF, от U+A640 до U+A69F. Часть кодов зарезервирована для использования в будущем.

Кодовое пространство [ править ]

Хотя формы записи UTF-8 и UTF-32 позволяют кодировать до [math]2^<31>[/math] [math](2\ 147\ 483\ 648)[/math] кодовых позиций, было принято решение использовать лишь [math]1\ 112\ 064[/math] для совместимости с UTF-16. Впрочем, даже и этого на текущий момент более чем достаточно — в версии 6.0 используется чуть менее [math]110\ 000[/math] кодовых позиций ( [math]109\ 242[/math] графических и [math]273[/math] прочих символов).

Кодовое пространство разбито на [math]17[/math] плоскостей (англ. planes) по [math]2^<16>[/math] [math](65\ 536)[/math] символов. Нулевая плоскость называется базовой, в ней расположены символы наиболее употребительных письменностей. Первая плоскость используется, в основном, для исторических письменностей, вторая — для для редко используемых иероглифов китайского письма, третья зарезервирована для архаичных китайских иероглифов. Плоскости [math]15[/math] и [math]16[/math] выделены для частного употребления.

Плоскости Юникода
ПлоскостьНазваниеДиапазон символов
Plane 0Basic multilingual plane (BMP)U+0000…U+​FFFF
Plane 1Supplementary multilingual plane (SMP)U+10000…U+​1FFFF
Plane 2Supplementary ideographic plane (SIP)U+20000…U+​2FFFF
Planes 3-13UnassignedU+30000…U+​DFFFF
Plane 14Supplement­ary special-purpose plane (SSP)U+E0000…U+​EFFFF
Planes 15-16Supplement­ary private use area (S PUA A/B)U+F0000…U+​10FFFF

Модифицирующие символы [ править ]

что такое код символа в информатике. Смотреть фото что такое код символа в информатике. Смотреть картинку что такое код символа в информатике. Картинка про что такое код символа в информатике. Фото что такое код символа в информатике

Графические символы в Юникоде делятся на протяжённые и непротяжённые. Непротяжённые символы при отображении не занимают дополнительного места в строке. К примеру, к ним относятся знак ударения. Протяжённые и непротяжённые символы имеют собственные коды, но последние не могут встречаться самостоятельно. Протяжённые символы называются базовыми (англ. base characters), а непротяженные — модифицирующими (англ. combining characters). Например символ «Й» (U+0419) может быть представлен в виде базового символа «И» (U+0418) и модифицирующего символа « ̆» (U+0306).

Способы представления [ править ]

Юникод имеет несколько форм представления (англ. Unicode Transformation Format, UTF): UTF-8, UTF-16 (UTF-16BE, UTF-16LE) и UTF-32 (UTF-32BE, UTF-32LE). Была разработана также форма представления UTF-7 для передачи по семибитным каналам, но из-за несовместимости с ASCII она не получила распространения и не включена в стандарт.

UTF-8 [ править ]

Символы UTF-8 получаются из Unicode cледующим образом:

UnicodeUTF-8Представленные символы
0x00000000 — 0x0000007F0xxxxxxxASCII, в том числе английский алфавит, простейшие знаки препинания и арабские цифры
0x00000080 — 0x000007FF110xxxxx 10xxxxxxкириллица, расширенная латиница, арабский алфавит, армянский алфавит, греческий алфавит, еврейский алфавит и коптский алфавит; сирийское письмо, тана, нко; Международный фонетический алфавит; некоторые знаки препинания
0x00000800 — 0x0000FFFF1110xxxx 10xxxxxx 10xxxxxxвсе другие современные формы письменности, в том числе грузинский алфавит, индийское, китайское, корейское и японское письмо; сложные знаки препинания; математические и другие специальные символы
0x00010000 — 0x001FFFFF11110xxx 10xxxxxx 10xxxxxx 10xxxxxxмузыкальные символы, редкие китайские иероглифы, вымершие формы письменности
111111xxслужебные символы c, d, e, f

Несмотря на то, что UTF-8 позволяет указать один и тот же символ несколькими способами, только наиболее короткий из них правильный. Остальные формы, называемые overlong sequence, отвергаются по соображениям безопасности.

Принцип кодирования [ править ]

Правила записи кода одного символа в UTF-8 [ править ]

1. Если размер символа в кодировке UTF-8 = [math]1[/math] байт

Код имеет вид (0aaa aaaa), где «0» — просто ноль, остальные биты «a» — это код символа в кодировке ASCII;

2. Если размер символа в кодировке в UTF-8 [math]\gt 1[/math] байт (то есть от [math]2[/math] до [math]6[/math] ):

2.1 Первый байт содержит количество байт символа, закодированное в единичной системе счисления; 2.2 «0» — бит терминатор, означающий завершение кода размера 2.3 далее идут значащие байты кода, которые имеют вид (10xx xxxx), где «10» — биты признака продолжения, а «x» — значащие биты.

В общем случае варианты представления одного символа в кодировке UTF-8 выглядят так:

Определение длины кода в UTF-8 [ править ]
Количество байт UTF-8Количество значащих бит
[math]1[/math][math]7[/math]
[math]2[/math][math]11[/math]
[math]3[/math][math]16[/math]
[math]4[/math][math]21[/math]
[math]5[/math][math]26[/math]
[math]6[/math][math]31[/math]

[math]C = 7[/math] при [math]n=1[/math]

[math]C = n\cdot5+1[/math] при [math]n\gt 1[/math]

UTF-16 [ править ]

UTF-16LE и UTF-16BE [ править ]

Один символ кодировки UTF-16 представлен последовательностью двух байт или двух пар байт. Который из двух байт в словах идёт впереди, старший или младший, зависит от порядка байт. Подробнее об этом будет сказано ниже.

UTF-32 [ править ]

UTF-32 — один из способов кодирования символов из Юникод, использующий для кодирования любого символа ровно [math]32[/math] бита. Остальные кодировки, UTF-8 и UTF-16, используют для представления символов переменное число байт. Символ UTF-32 является прямым представлением его кодовой позиции (англ. code point).

Главный недостаток UTF-32 — это неэффективное использование пространства, так как для хранения символа используется четыре байта. Символы, лежащие за пределами нулевой (базовой) плоскости кодового пространства редко используются в большинстве текстов. Поэтому удвоение, в сравнении с UTF-16, занимаемого строками в UTF-32 пространства не оправдано.

Порядок байт [ править ]

В современной вычислительной технике и цифровых системах связи информация обычно представлена в виде последовательности байт. В том случае, если число не может быть представлено одним байтом, имеет значение в каком порядке байты записываются в памяти компьютера или передаются по линиям связи. Часто выбор порядка записи байт произволен и определяется только соглашениями.

[math]M = \sum_^A_i\cdot 256^i=A_0\cdot 256^0+A_1\cdot 256^1+A_2\cdot 256^2+\dots+A_n\cdot 256^n.[/math]

Варианты записи [ править ]

Порядок от старшего к младшему [ править ]

В этом же виде (используя представление в десятичной системе счисления) записываются числа индийско-арабскими цифрами в письменностях с порядком знаков слева направо (латиница, кириллица). Для письменностей с обратным порядком (арабская) та же запись числа воспринимается как «от младшего к старшему».

Порядок байт от старшего к младшему применяется во многих форматах файлов — например, PNG, FLV, EBML.

Порядок от младшего к старшему [ править ]

В противоположность порядку big-endian, соглашение little-endian поддерживают меньше кросс-платформенных протоколов и форматов данных; существенные исключения: USB, конфигурация PCI, таблица разделов GUID, рекомендации FidoNet.

Переключаемый порядок [ править ]

Многие процессоры могут работать и в порядке от младшего к старшему, и в обратном, например, ARM, PowerPC (но не PowerPC 970), DEC Alpha, MIPS, PA-RISC и IA-64. Обычно порядок байт выбирается программно во время инициализации операционной системы, но может быть выбран и аппаратно перемычками на материнской плате. В этом случае правильнее говорить о порядке байт операционной системы. Переключаемый порядок байт иногда называют англ. bi-endian.

Смешанный порядок [ править ]

Смешанный порядок байт (англ. middle-endian) иногда используется при работе с числами, длина которых превышает машинное слово. Число представляется последовательностью машинных слов, которые записываются в формате, естественном для данной архитектуры, но сами слова следуют в обратном порядке.

В процессорах VAX и ARM используется смешанное представление для длинных вещественных чисел.

Различия [ править ]

что такое код символа в информатике. Смотреть фото что такое код символа в информатике. Смотреть картинку что такое код символа в информатике. Картинка про что такое код символа в информатике. Фото что такое код символа в информатике

Для записи длинных чисел (чисел, длина которых существенно превышает разрядность машины) обычно предпочтительнее порядок слов в числе little-endian (поскольку арифметические операции над длинными числами производятся от младших разрядов к старшим). Порядок байт в слове — обычный для данной архитектуры.

Маркер последовательности байт [ править ]

Для определения формата представления Юникода в начало текстового файла записывается сигнатура — символ U+FEFF (неразрывный пробел с нулевой шириной), также именуемый маркером последовательности байт (англ. byte order mark (BOM)). Это позволяет различать UTF-16LE и UTF-16BE, поскольку символа U+FFFE не существует.

что такое код символа в информатике. Смотреть фото что такое код символа в информатике. Смотреть картинку что такое код символа в информатике. Картинка про что такое код символа в информатике. Фото что такое код символа в информатике

Представление BOM в кодировках

КодированиеПредставление (Шестнадцатеричное)
UTF-8EF BB BF
UTF-16 (BE)FE FF
UTF-16 (LE)FF FE
UTF-32 (BE)00 00 FE FF
UTF-32 (LE)FF FE 00 00

В кодировке UTF-8, наличие BOM не является существенным, поскольку, нет альтернативной последовательности байт. Когда BOM используется на страницах или редакторах для контента закодированного в UTF-8, иногда он может представить пробелы или короткие последовательности символов, имеющие странный вид (такие как ). Именно поэтому, при наличии выбора, для совместимости, как правило, лучше упустить BOM в UTF-8 контенте.Однако BOM могут еще встречаться в тексте закодированном в UTF-8, как побочный продукт перекодирования или потому, что он был добавлен редактором. В этом случае BOM часто называют подписью UTF-8.

Когда символ закодирован в UTF-16, его [math]2[/math] или [math]4[/math] байта можно упорядочить двумя разными способами (little-endian или big-endian). Изображение справа показывает это. Byte order mark указывает, какой порядок используется, так что приложения могут немедленно расшифровать контент. UTF-16 контент должен всегда начинатся с BOM.

BOM также используется для текста обозначенного как UTF-32. Аналогично UTF-16 существует два варианта четырёхбайтной кодировки — UTF-32BE и UTF-32LE. К сожалению, этот способ не позволяет надёжно различать UTF-16LE и UTF-32LE, поскольку символ U+0000 допускается Юникодом

Проблемы Юникода [ править ]

В Юникоде английское «a» и польское «a» — один и тот же символ. Точно так же одним символом (но отличающимся от «a» латинского) считаются русское «а» и сербское «а». Такой принцип кодирования не универсален; по-видимому, решения «на все случаи жизни» вообще не может существовать.

Примеры [ править ]

Источник

Кодирование информации — основные виды, способы и правила

Информация бывает разных видов, таких как запах, вкус, звук; символы и знаки. В различных отраслях науки, техники и культуры применяются особые формы и методики для кодирования и записи информации.

Рассмотрим, например, персональные компьютеры, которые предназначены для обработки графических изображений, воспроизведения музыки и видеофайлов, организации видео конференций, научных расчетов. Для предоставления данных в виде, понимаемом компьютерами, проводится кодирование информации путём составления специальной модели явления либо объекта. Именно процесс преобразования сообщения в комбинацию символов называется кодированием.

Системы счисления делятся на позиционные и непозиционные. Пример непозиционной системы счисления — римская: несколько чисел приняты за основные (например, I, V, X, L, C, D, M), а остальные получаются из основных путем сложения (как VI, VII) или вычитания (как IV, IX). В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает.

что такое код символа в информатике. Смотреть фото что такое код символа в информатике. Смотреть картинку что такое код символа в информатике. Картинка про что такое код символа в информатике. Фото что такое код символа в информатике

Трактовка понятий

Человеческие мысли выражаются в виде текста, который состоит из слов. Подобное представление информации называется алфавитным, так как основа языка — алфавит. Он считается конечным набором различных знаков любой природы. Их используют для составления сообщений.

Вам известно что для обозначения количества мы пользуемся цифрами, для обозначения звуков на письме буквами. Можно сказать что цифры и буквы это коды. Одна и тажа информация может быть закодирована по разному. Например китайские и японские иероглифы являются символами которыми кодируется буква или слово. Основу любого языка составляет алфавит — конечный набор различных знаков (символов) любой природы, из которых складывается сообщение на данном языке. То есть символизация информации – это описание объектов или явлений с помощью символов того или иного алфавита. Под мощностью алфавита понимают количество символов, составляющий данный алфавит, что в свою очередь определяет количество возможных комбинаций (слов) которые можно составить из символов данного алфавита в соответствии с определенными правилами.

Как правило представления сообщения, подбираются так что бы его передача была как можно быстрее и надежней, а его обработка была как можно более удобной для адресата. Одно и тоже сообщение можно кодировать по разному. Одной систем кодирования является азбука. Можно кодировать и звуки одна из таких систем кодирования — ноты. Хранить можно не только текстовую и звуковую информацию, в виде кодов хранятся и изображения. Если рассмотреть рисунок через увеличительное стекло то видно что он состоит из точек. Координаты каждой точки можно запомнить в виде чисел. Цвет каждой точки можно запомнить так же в виде чисел. Такие числа могут храниться в памяти компьютера и передаваться на расстояния.

Чтобы зашифровать данные, необходимо знать правила записи кодов (условные обозначения информации). Понятие кодирование связано с преобразованием сообщений в комбинацию символов с учётом кодов. При общении люди используют русский либо другой национальный язык. В процессе разговора код передаётся звуками, а при письменном общении с помощью букв. У водителей или у пилотов обработка информации также осуществляется световыми сигналами, специальнвми символами — знаками.

Количество и графическое отображение символов в алфавитах естественных языков сложилось исторически и характеризуется особенностями языка (произносимыми звуками). Например русский алфавит имеет 33 символа, латинский – 26, китайский несколько тысяч.

К основным способам кодирования информации в информатике относятся: числовой, символьный (текстовый), графический. В первом случае используются числа, во втором — символы того алфавита, что и первоначальный текст, в третьем — картинки, рисунки, значки.

Двоичная методика

Современный компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. В процессе хранения, обработки и передачи информации в компьютере используется особая двоичная система кодирования, алфавит которой состоит всего из двух знаков «0» и «1». Дело в том, что компьютер способен обрабатывать и хранить только лишь один вид представления данных – цифровой. Связано это с тем, что в цифровой электронике удобнее всего представлять информацию в виде последовательности электрических импульсов: техническое устройство, безошибочно различающее 2 разных состояния сигнала, оказалось проще создать, чем то, которое бы безошибочно различало 5 или 10 различных состояний. Поэтому любую входящую в него информацию необходимо переводить в цифровой вид. Такое кодирование информации принято называть двоичным, на его основе работают все окружающие нас компьютеры, смартфоны и т.п.

На английском языке используется выражение binary digit либо сокращённо bit (бит). Через 1 бит можно выразить: да либо нет; белое или чёрное; ложь либо истина.

Двоичное кодирование информации привлекает тем, что легко реализуется технически. Электронные схемы для обработки двоичных кодов должны находиться только в одном из двух состояний: есть сигнал/нет сигнала или высокое напряжение/низкое напряжение. В результате любая информация кодируется в компьютерах с помощью последовательностей лишь двух цифр — 0 и 1.

Итак, минимальные единицы измерения информации – это бит и байт. Один бит позволяет закодировать 2 значения (0 или 1). Используя два бита, можно закодировать 4 значения: 00, 01, 10, 11. Тремя битами кодируются 8 разных значений: 000, 001, 010, 011, 100, 101, 110, 111. Из приведенных примеров видно, что добавление одного бита увеличивает в 2 раза то количество значений, которое можно закодировать. 1 байт состоит из 8 бит и способен закодировать 256 значений.

Традиционно для того чтобы закодировать один символ используют количество информации равное 1 байту. Поэтому чаще всего одному символу текста, хранимому в компьютере, соответствует один байт памяти.

Наряду с битами и байтами используют и большие единицы измерения информации.

Подробнее о информации в компьютерных системах можно прочтитать в статье Понятие информации. Информатика

Текстовое значение

Кодирование и обработка текстовой информации Уже с 60-х годов прошлого столетия, компьютеры всё больше стали использовать для обработки текстовой информации. Для кодирования текстовой информации в компьютере применяется двоичное кодирование, т.е. представление текста в виде последовательности 0 и 1. Чтобы выразить текст числом, каждая буква сопоставляется с числовым значением. Смысл кодирования: одному символу принадлежит код в пределах 0−255 либо двоичный код от 00000000 до 11111111.

Текстовая информация состоит из символов: букв, цифр, знаков препинания и др. Одного байта достаточно для хранения 256 различных значений, что позво ляет размещать в нем любой из алфавитно-цифровых символов. Первые 128 сим волов (занимающие семь младших бит) стандартизированы с помощью кодировки ASCII (American Standart Code for Information Interchange). Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 0000000 до 11111111 или соответствующий ему десятичный код от 0 до 255.

В мировой практике для кодирования текста при помощи байтов используются разные стандарты. Самым распространенным, но не единственным видом кодирования является код ASCII. В соответствии с этим стандартом, знаки в пределах 0−32 соответствуют операциям, а 33−127 — символам из латинского алфавита, знакам препинания и арифметики. Для национальных кодировок применяются значения 128−255. В разных национальных кодировках одному и тому же коду соответствуют различные символы. К примеру, существует 5 кодировочных таблиц для русских букв (Windows, MS-DOS, Mac, ISO, КОИ – 8). Поэтому тексты созданные в одной кодировке не будут правильно отображаться в другой.

Первоначально в кодах ASCII было 7 бит информации. В последующем ее расширили до 8-битной (1 байт) кодировки. Обьем 7-битного кодирования по сравнению с 8-битным в 2 раза меньше. 2 7 =128 8 =256.

В настоящее время для кодирования кириллицы наибольшее распространение получила кодовая таблица СР1251, которая используется в операционных системах семейства Windows фирмы Microsoft. Во всех современных кодовых таблицах, кроме таблицы стандарта Unicode, для кодирования одного символа отводится 8 двоичных разрядов (8 бит).

В конце прошлого века появился новый международный стандарт Unicode, в котором один символ представляется двухбайтовым двоичным кодом. Применение этого стандарта – продолжение разработки универсального международного стандарта, позволяющего решить проблему совместимости национальных кодировок символов. С помощью данного стандарта можно закодировать 65536 различных символов.

Растровое изображение

Графическая информация, представленная в виде рисунков, фотографий, слайдов, подвижных изображений (анимация, видео), схем, чертежей, может создаваться и редактироваться с помощью компьютера, при этом она соответствующим образом кодируется. В настоящее время существует достаточно большое количество прикладных программ для обработки графической информации, но все они реализуют три вида компьютерной графики: растровую, векторную и фрактальную. Мы рассмотрим самую распространенный, растровый формат кодирования изображения.

Графические данные на мониторе представляются в качестве растрового изображения. Если более пристально рассмотреть графическое изображение на экране монитора компьютера, то можно увидеть большое количество разноцветных точек (пикселов – от англ. pixel, образованного от picture element – элемент изображения), которые, будучи собраны вместе, и образуют данное графическое изображение. Каждому пикселю присвоен особый код, в котором хранится информация об оттенке пикселя. Из этого можно сделать вывод: графическое изображение в компьютере определенным образом кодируется и должно быть представлено в виде графического файла.

что такое код символа в информатике. Смотреть фото что такое код символа в информатике. Смотреть картинку что такое код символа в информатике. Картинка про что такое код символа в информатике. Фото что такое код символа в информатике

Файлы, созданные на основе растровой графики, предполагают хранение данных о каждой отдельной точке изображения. Для отображения растровой графики не требуется сложных математических расчетов, достаточно лишь получить данные о каждой точке изображения (ее координаты и цвет) и отобразить их на экране монитора компьютера.

Что делать, если рисунок цветной? Формирование цветного изображения на мониторе осуществляется путём смешивания 3-х основных цветов: синего, красного и зелёного. В этом случае для кодирования цвета пикселя уже не обойтись одним битом. В системе кодирования цветных изображений RGB (R — красный, G — зеленый и B — синий) яркость каждой цветовой составляющей (или, как говорят, каждого канала) кодируется целым числом от 0 до 255. При этом код цвета — это тройка чисел (R,G,B), яркости отдельных каналов. Цвет (0,0,0) — это черный цвет, а (255,255,255) — белый. Если все составляющие имеют равную яркость, получаются оттенки серого цвета, от черного до белого. При кодировании цвета на веб-страницах также используется модель RGB, но яркости каналов записываются в шестнадцатеричной системе счисления (от 0016 до FF16), а перед кодом цвета ставится знак #. Например, код красного цвета записывается как #FF0000, а код синего — как #0000FF.

что такое код символа в информатике. Смотреть фото что такое код символа в информатике. Смотреть картинку что такое код символа в информатике. Картинка про что такое код символа в информатике. Фото что такое код символа в информатике

Звуки и их разрядность

Человек воспринимает звуковые волны (колебания воздуха) с помощью слуха в форме звука различных громкости и тона. Чем больше интенсивность звуковой волны, тем громче звук, чем больше частота волны, тем выше тон звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

В каждом современном компьютере предусмотрена звуковая плата, колонки, микрофон. С их помощью производится запись, сохраняются и воспроизводятся звуки — волны с определённой частотой и амплитудой. Программное обеспечение для компьютеров преобразовывает звуковые сигналы в последовательность нулей и единиц. Для этого использунтся аудиоадаптер или звуковая плата. Устройство подключается к компьютеру с целью преобразования электроколебаний звуковой частоты в двоичный код. Процесс преобразования выполняется как при вводе звуков в компьютер так и при обратном их преобразовании.

Для человека звук тем громче, чем больше амплитуда сигнала, и тем выше тон, чем больше частота сигнала. Компьютер — устройство цифровое, поэтому непрерывный звуковой сигнал должен быть преобразован в последовательность электрических импульсов (нулей и единиц). Оцифровку звука выполняет специальное устройство на звуковой плате. Называется оно аналого-цифровой преобразователь (АЦП). Обратный процесс — воспроизведение закодированного звука производится с помощью цифро-аналогового преобразователя (ЦАП).

В процессе кодирования непрерывного звукового сигнала производится его дискретизация по времени, или, как говорят, «временная дискретизация».

Для записи аналогового звука и г го преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее «лесенка» цифрового звукового сигнала повторяет кривую аналогового звукового сигнала.

Глубина кодирования звука — это количество бит, используемое для кодирования различных уровней сигнала или состояний. Современные звуковые карты обеспечивают 16-битную глубину кодирования звука, и тогда общее количество различных уровней громкомти, который сможет распознать компьютер будет: N = 2 16 = 65536.

Частота дискретизации- это количество измерений уровня звукового сигнала в единицу времени. Эта характеристика показывает качество и точность процедуры двоичного кодирования. Измеряется в герцах (Гц).

Одно измерение за одну секунду соответствует частоте 1 Гц, 1000 измерений за одну секунду — 1 килогерц (кГц). Частота дискретизации звукового сигнала может принимать значения от 8 до 196 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц — качеству звучания аудио-CD. Достаточно высокое качество звучания достигается при частоте дискретизации 44 кГц и глубины кодирования звука, равной 16 бит.

Оцифрованный сигнал в виде набора последовательных значений амплитуды уже можно сохранить в памяти компьютера. В случае, когда записываются абсолютные значения амплитуды, такой формат записи называется PCM ( Pulse Code Modulation). Стандартный аудио компакт-диск (CD-DA), применяющийся с начала 80-х годов 20-го столетия, хранит информацию в формате PCM с частотой дискретизации 44.1 кГц и разрядностью квантования 16 бит.

Подробнее о свойствах звука можно прочитать в статье Звук

Машинные команды

В вычислительных машинах, включая компьютеры, предусмотрена программа для управления их работой. Все команды кодируются в определённой последовательности с помощью нулей и единиц. Подобные действия называются машинными командами (МК).

Машинная команда представляет собой закодированное по определенным правилам указание микропроцессору на выполнение некоторой операции или действия. Каждая команда содержит элементы, определяющие:

Структура машинной команды состоит из операционной и адресной части. В операционной части содержится код операции. Чем длиннее операционная часть, тем большее количество операций можно в ней закодировать.

В адресной части машинной команды содержится информация об адресах операндов. Это либо значения адресов ячеек памяти, в которых размещаются сами операнды (абсолютная адресация), либо информация, по которой процессор определяет значения их адресов в памяти (относительная адресация). Абсолютная адресация использовалась только в машинах 1 и 2-го поколений. Начиная с машин 3-го поколения, наряду с абсолютной используется относительная адресация.

Подробнее о поколениях компьютеров смотрите в статье История развития компьютеров

Заключение

Итак, кодирование информации — процесс преобразования сигнала из формы, удобной для непосредственного использования информации, в форму, удобную для передачи, хранения или автоматической переработки (Цифровое кодирование, аналоговое кодирование, таблично-символьное кодирование, числовое кодирование). Процесс преобразования сообщения в комбинацию символов в соответствии с кодом называется кодированием, процесс восстановления сообщения из комбинации символов называется декодированием.

Кодирование информации — процесс формирования определенного представления информации. В более узком смысле под термином «кодирование» понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Информацию необходимо представлять в какой — либо форме, т.е. кодировать. Для представления дискретной информации используется некоторый алфавит. Однако однозначное соответствие между информацией и алфавитом отсутствует. Другими словами, одна и та же информация может быть представлена посредством различных алфавитов. В связи с такой возможностью возникает проблема перехода от одного алфавита к другому, причём, такое преобразование не должно приводить к потере информации.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *