Как выполнять сложение смешанных дробей
Сложение смешанных чисел
Чтобы сложить смешанные числа, надо сложить отдельно их целые и их дробные части и полученные результаты сложить.
Условились считать, что любое натуральное число имеет дробную часть, равную нулю, а любая правильная дробь имеет целую часть, равную нулю. Поэтому складывать правильные дроби и натуральные числа со смешанными числами можно по правилу сложения смешанных чисел.
Так как натуральное число имеет дробную часть, равную нулю, то при сложении смешанного числа с натуральным числом, складывается только целая часть c натуральным числом, а дробная часть остаётся без изменений:
Так как правильная дробь имеет целую часть, равную нулю, то при сложении смешанного числа с правильной дробью, складывается только дробная часть с правильной дробью, а целая часть остаётся без изменений:
При сложении дробных частей двух смешанных чисел или дробной части смешанного числа с правильной дробью может получиться неправильная дробь. В этом случае неправильную дробь нужно представить в виде смешанного числа:
Если дробные части смешанных чисел имеют разные знаменатели, то сначала их нужно привести к общему знаменателю:
Также, смешанные числа можно записать в виде неправильных дробей и выполнить сложение, а в конце (если требуется по условию задания) записать результат в виде смешанного числа:
Калькулятор сложения смешанных чисел
Сложение смешанных дробей
Рассмотрим, как выполнить сложение смешанных дробей с одинаковыми знаменателями.
Чтобы сложить смешанные дроби, надо:
1) отдельно сложить их целые части;
2) отдельно сложить дробные части.
Если при сложении дробных частей получается неправильная дробь, надо выделить из нее целую частьи прибавить ее к уже имеющейся целой части.
С помощью букв правило сложения смешанных дробей с одинаковыми знаменателями можно записать так:
Выполнить сложение смешанных дробей:
Обычно сложение целых частей и сложение дробных частей выполняют устно и пишут короче:
Здесь дробная часть второго слагаемого равна нулю.
В этом примере равна нулю целая часть второго слагаемого.
Так как при сложении дробных частей получили неправильную дробь, выделяем целую часть и добавляем ее к уже полученной целой части:
2 Comments
ну и вы халтурщики, а как складывать дроби с смешаными числами в 3 слагаемых
Уважаемый Илья! Получите образование и поделитесь своими знаниями. Я буду очень рада, если у Вас получится.
Сложение дробей: теория и практика
Понятие дроби
Дробь — одна из форм записи частного чисел a и b, представленная в виде a/b. Существует два формата записи:
Над чертой принято писать делимое, которое является числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между ними означает деление.
Дроби бывают двух видов:
Числовые — состоят из чисел, например, 5/9 или (1,5 − 0,2)/15.
Алгебраические — состоят из переменных, например, (x + y)/(x − y). В этом случае значение дроби зависит от данных значений букв.
Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 3/7 и 31/45.
Неправильной называют такую дробь, у которой числитель больше знаменателя или равен ему. Например, 21/4. Такое число является смешанным и читается, как пять целых одна четвертая, а записывается — 5 1/4.
Основные свойства дробей
Дробь не имеет значения, если делитель равен нулю.
Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.
Дроби a/b и c/d называют равными, если a × d = b × c.
Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.
Онлайн-школа Skysmart приглашает детей и подростков на курсы по математике — за интересными задачами, новыми прикладными знаниями и хорошими оценками!
Как плюсовать дроби
Сложение — это арифметическое действие, в результате которого получается новое число. Оно содержит в себе сумму заданных чисел.
Свойства сложения
Давайте рассмотрим несколько вариантов сложения обыкновенных дробей.
Сложение дробей с одинаковыми знаменателями
Чтобы получить сумму двух дробей с равными знаменателями, нужно сложить числители исходных дробей, а знаменатель оставить прежним.
Не забудьте проверить, можно ли сократить дробь.
Сложение дробей с разными знаменателями
Как складывать дроби с разными знаменателями — для этого нужно найти наименьший общий знаменатель (далее — НОЗ), а затем воспользоваться предыдущим правилом. Вот, что делать:
1. Найдем наименьшее общее кратное знаменателей (далее — НОК) для определения единого делителя.
Для этого записываем в столбик числа, которые в произведении дают значения знаменателей складываемых дробей. Далее перемножаем полученное и получаем НОК.
НОК (15, 18) = 3 × 2 × 3 × 5 = 90
2. Найдем дополнительные множители для каждой дроби. Для этого НОК делим на каждый знаменатель:
Полученные числа записываем справа сверху над числителем.
3. Воспользуемся одним из основных свойств дробей: перемножим делимое и делитель на дополнительный множитель. После умножения делитель должен быть равен наименьшему общему кратному, которое мы ранее высчитывали. Затем можно перейти к сложению.
4. Проверим полученный результат:
Еще раз ход решения одной строкой:
Сложение смешанных чисел
Сложение смешанных чисел можно привести к отдельному сложению их целых частей и дробных частей. Для этого нужно действовать поэтапно:
1. Сложить целые части.
2. Сложить дробные части.
Если знаменатели разные, воспользуемся знаниями из предыдущего примера и приведем к общему.
3. Суммируем полученные результаты.
Если при сложении дробных частей получилась неправильная дробь, нужно выделить ее целую часть и прибавить к полученной ранее целой части.
Прибавление и вычитание дробей — смежные темы: принципы и закономерности очень похожи. Чтобы закрепить знания, тренируйтесь решать примеры на сложение дробей как можно чаще.
Математика. 5 класс
Конспект урока
Сложение смешанных дробей
Перечень рассматриваемых вопросов:
– сложение смешанной дроби с целым числом;
– сложение смешанной дроби с правильной дробью;
– сложение смешанных дробей с общим знаменателем;
– сложение смешанных дробей с разными знаменателями;
– преобразование неправильных дробей в смешанное число.
Смешанная дробь – сумма натурального числа и правильной дроби, записанная без знака плюс.
Целая часть смешанной дроби – натуральное число в смешанной дроби.
Дробная часть смешанной дроби – правильная дробь в смешанной дроби.
Переместительное свойство сложения – от перестановки слагаемых местами сумма не меняется.
Сочетательное свойство сложения – чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего чисел.
Порядок убывания – расположение элементов от большего к меньшему.
Порядок возрастания – расположение элементов от меньшего к большему.
1. Никольский С. М. Математика. 5 класс: Учебник для общеобразовательных учреждений. / ФГОС // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 272 с.
1. Чулков П. В. Математика: тематические тесты. 5 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. — М.: Просвещение, 2009. — 142 с.
2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин. — М.: Просвещение, 2014. — 95 с.
Теоретический материал для самостоятельного изучения
Ранее мы говорили, что смешанная дробь – это сумма натурального числа и правильной дроби. При сложении смешанных дробей используют законы сложения. Рассмотрим это на примере:
Каждую смешанную дробь представим, как сумму целой и дробной части.
Вспомним переместительное свойство сложения – от перестановки слагаемых местами сумма не меняется. Перегруппируем слагаемые. Запишем сначала сумму целых частей, а затем сумму дробных частей. Сложим отдельно целые и дробные части обеих дробей. Полученную сумму запишем смешанной дробью, то есть уберём знак плюс между натуральным числом и правильной дробью.
Для удобства будем считать, что у каждого натурального числа есть дробная часть, равная нулю, а у каждой правильной дроби есть целая часть, равная нулю. С учётом этого складывать натуральные числа и правильные дроби со смешанными дробями можно по тому же правилу.
Проведём те же преобразования, что и в предыдущем примере: отдельно сложим целые и дробные части обоих чисел. Запишем сумму целой и дробной части в виде смешанной дроби, т. е. без знака плюс.
Рассмотрим пример, в котором к смешанной дроби прибавляют простую дробь.
Отдельно складываем целые части и дробные части. Сумму натурального числа и дроби записываем смешанным числом, т. е. без знака плюс.
При сложении двух смешанных дробей сумма дробных частей может оказаться неправильной дробью. Посмотрим на примере, как действовать в таком случае.
Сумма дробных частей получилась равной семи пятым. Преобразуем неправильную дробь в смешанную. Семь пятых – это одна целая и две пятых. С учётом этого сумма данных смешанных чисел равна четырём целым и двум пятым.
Если необходимо сложить смешанные дроби, дробные части которых имеют разные знаменатели, то сначала нужно привести дробные части к общему знаменателю, а потом выполнить сложение.
Общий знаменатель дробных частей равен пятнадцати. Сумма будет равна семи целым тринадцати пятнадцатым. Обратите внимание на запись решения данного примера. Здесь уже нет промежуточных вычислений сумм целых и дробных частей. Записывать эти вычисления не нужно, достаточно понимать последовательность своих действий.
Рассмотрим ещё одно выражение:
В этом выражении у обоих слагаемых есть и целая, и дробная части. Дробные части имеют различные знаменатели. Приводим дробные части к общему знаменателю. Отдельно складываем целые и дробные части, не записывая это подробно. Сумма дробных частей оказалась равной сорока трём тридцатым, это неправильная дробь. Преобразуем её в смешанную дробь. Сорок три тридцатых – это одна целая тринадцать тридцатых. Выполним сложение семи и одной целой тринадцати тридцатых. Получим восемь целых тринадцать тридцатых.
При решении этого выражения можно выполнить действия по порядку: сначала найти суммы в скобках, затем сложить полученные суммы.
В этом случае нам придётся приводить дроби к общему знаменателю. Выполним это решение:
Можно решить это выражение другим способом, вспомнив сочетательный и переместительные свойства сложения:
Во втором случае решение получилось короче, нам не пришлось приводить дроби к общему знаменателю.
Сегодня мы рассмотрели сложение смешанных дробей с натуральными числами, правильными дробями и смешанными дробями. Во всех этих случаях мы действовали по одному правилу: отдельно складывали целые и дробные части слагаемых, а затем складывали полученные результаты.
№ 1. Выберите выражения, в решении которых допущены ошибки или решение не доведено до верного ответа:
В первом выражении приведено полное, верное решение: отдельно сложены целые и дробные части смешанных дробей. Дробные части приведены к общему знаменателю. Сумма дробных частей оказалась неправильной дробью, эта дробь правильно преобразована в смешанную дробь. Сложение натурального числа и смешанной дроби выполнено верно.
Во втором выражении при сложении дробных частей, правильно приведённых к общему знаменателю, также получилась неправильная дробь, верно произведено сокращение этой неправильной дроби, но она не преобразована в смешанную дробь. В ответе получилось число, дробная часть которого является неправильной дробью. Это неверная запись ответа, хотя вычисления произведены правильно.
В третьем выражении неправильно выполнено сложение дробных частей. Дроби не приводятся к общему знаменателю, складывается числитель с числителем, знаменатель со знаменателем, что не является верным нахождением суммы двух дробей. В ответе получилась сократимая дробь, которая сокращена верно.
Ответ: ошибки допущены во 2 и 3 выражениях.
№ 2. Вычислите периметр прямоугольного участка земли, если его ширина м, а длина на м больше.
Периметр прямоугольника – это сумма длин всех его сторон. Так как у прямоугольника противоположные стороны попарно равны, достаточно знать длину и ширину прямоугольника. Ширина известна, она равна м, а о длине сказано, что она на м больше. Найдём длину прямоугольника, для этого к ширине прибавим м.
(м) – длина прямоугольника.
При сложении мы привели дробные части к общему знаменателю, сложили их, преобразовали получившуюся неправильную дробь в смешанную дробь и сложили её с суммой целых частей.
Теперь найдём периметр прямоугольника. Сложим длины четырёх его сторон:
(м) – периметр прямоугольника
Заметим, что промежуточные вычисления – отдельное сложение целых и дробных частей – записывать не обязательно.
Дроби. Сложение дробей.
Сложение дробей с одинаковыми знаменателями.
Общая формула для сложения обыкновенных дробей и вычитания дробей с одинаковыми знаменателями:
Обратите внимание! Проверьте нельзя ли сократить дробь, которую вы получили, записывая ответ.
Сложение дробей с разными знаменателями.
Правила сложения дробей с разными знаменателями:
Примеры сложения дробей с разными знаменателями:
Сложение смешанных чисел (смешанных дробей).
Правила сложения смешанных дробей:
Пример сложения смешанной дроби :
Сложение десятичных дробей.
При сложении десятичных дробей процесс записывают «столбиком» (как обычное умножение столбиком), так чтобы одноимённые разряды находились друг под другом без смещения. Запятые обязательно выравниваем чётко друг под другом.
Правила сложения десятичных дробей:
1. Если нужно, уравниваем количество знаков после запятой. Для этого добавляем нули к необходимой дроби.
2. Записываем дроби так, чтобы запятые находились друг под другом.
3. Складываем дроби, не обращая внимания на запятую.
4. Ставим запятую в сумме под запятыми, дробей, которые складываем.
Обратите внимание! Когда у заданных десятичных дробей разное количество знаков (цифр) после запятой, то к дроби, у которой меньше десятичных знаков приписываем нужное количество нулей, для уравнения в дробях число знаков после запятой.
Разберёмся на примере. Найти сумму десятичных дробей:
Если сложение десятичных дробей вы освоили достаточно хорошо, то недостающие нули можно дописывать в уме.