Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ

ВригономСтрия простыми словами

ΠžΡ„ΠΈΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ объяснСниС Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π² ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠ°Ρ… ΠΈΠ»ΠΈ Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΈΠ½Ρ‚Π΅Ρ€Π½Π΅Ρ‚ сайтах, Π° Π² этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΌΡ‹ Ρ…ΠΎΡ‚ΠΈΠΌ ΠΎΠ±ΡŠΡΡΠ½ΠΈΡ‚ΡŒ ΡΡƒΡ‚ΡŒ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ «Π½Π° ΠΏΠ°Π»ΡŒΡ†Π°Ρ…».

Для удобства Ρ€Π°Π±ΠΎΡ‚Ρ‹ с тригономСтричСскими функциями Π±Ρ‹Π» ΠΏΡ€ΠΈΠ΄ΡƒΠΌΠ°Π½ тригономСтричСский ΠΊΡ€ΡƒΠ³, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ прСдставляСт собой ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ с Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΌ радиусом (r = 1).

Π’ΠΎΠ³Π΄Π° ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ радиуса Π½Π° оси X ΠΈ Y (OB ΠΈ OA’) Ρ€Π°Π²Π½Ρ‹ ΠΊΠ°Ρ‚Π΅Ρ‚Π°ΠΌ построСнного Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠžΠΠ’, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ Ρ€Π°Π²Π½Ρ‹ значСниям синуса ΠΈ косинуса Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°.

Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π€ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ

ВангСнс ΠΈ котангСнс ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ΡΡ соотвСтстсвСнно ΠΈΠ· Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² OCD ΠΈ OC’D’, построСнных ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎ исходному Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΡƒ OAB.

Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π€ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ

Для упрощСния обучСния тригономСтричСским функциям Π² школС ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΠ΄ΠΎΠ±Π½Ρ‹Π΅ ΡƒΠ³Π»Ρ‹ Π² 0Β°, 30Β°, 45Β°, 60Β° ΠΈ 90Β°.

ЗначСния тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‚ΡΡ ΠΊΠ°ΠΆΠ΄Ρ‹Π΅ 90Β° ΠΈ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… случаях мСняя Π·Π½Π°ΠΊ Π½Π° ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ.

Достаточно Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ значСния Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π²Π°ΠΆΠ½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ² ΠΈ ΠΏΠΎΠ½ΡΡ‚ΡŒ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ для Π±ΠžΠ»ΡŒΡˆΠΈΡ… ΡƒΠ³Π»ΠΎΠ².

ЗначСния тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ
для ΠΏΠ΅Ρ€Π²ΠΎΠΉ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈ ΠΊΡ€ΡƒΠ³Π° (0Β° – 90Β°)

ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π° Π·Π½Π°ΠΊΠΎΠ² тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π€ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ

Π£Π³ΠΎΠ» ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Ρ‚Π°ΠΊ ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ. ΠžΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΡƒΠ³ΠΎΠ» считаСтся ΡƒΠ³ΠΎΠ», ΠΎΡ‚ΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡƒΡŽ сторону.

Π’ Π²ΠΈΠ΄Ρƒ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ полная ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ составляСт 360Β°, значСния тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΡƒΠ³Π»ΠΎΠ², ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰ΠΈΡ… ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ радиуса, РАВНЫ.

Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π€ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ

Для Π»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ понимания ΠΈ запоминания Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ΡΡŒ динамичСским ΠΌΠ°ΠΊΠ΅Ρ‚ΠΎΠΌ тригономСтричСского ΠΊΡ€ΡƒΠ³Π° Π½ΠΈΠΆΠ΅. НаТимая ΠΊΠ½ΠΎΠΏΠΊΠΈ Β«+Β» ΠΈ «–» значСния ΡƒΠ³Π»Π° Π±ΡƒΠ΄ΡƒΡ‚ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Ρ‚ΡŒΡΡ ΠΈΠ»ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒΡΡ соотвСтствСнно.

ВригономСтричСский ΠΊΡ€ΡƒΠ³

Π£Π³Π»Ρ‹ Π² Ρ€Π°Π΄ΠΈΠ°Π½Π°Ρ…

Π§Ρ‚ΠΎΠ±Ρ‹ Π·Π°ΠΊΡ€Π΅ΠΏΠΈΡ‚ΡŒ свои знания ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ сСбя, Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ΡΡŒ ΠΎΠ½Π»Π°ΠΉΠ½-Ρ‚Ρ€Π΅Π½Π°ΠΆΠ΅Ρ€ΠΎΠΌ для запоминания Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ синус, косинус, тангСнс ΠΈ котангСнс Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅?

Бинус, косинус ΠΈ тангСнс острого ΡƒΠ³Π»Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

ΠŸΡ€ΠΈΠ²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽ Вас Π΄ΠΎΡ€ΠΎΠ³ΠΈΠ΅ учащиСся.

БСйчас рассмотрим Ρ‡Ρ‚ΠΎ ΠΆΠ΅ Ρ‚Π°ΠΊΠΎΠ΅ синус, косинус, тангСнс ΠΈ котангСнс Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅?

Π­Ρ‚ΠΎ Ρ‚Π΅ΠΌΠ° Π½Π΅ слоТная, Π³Π»Π°Π²Π½ΠΎΠ΅ это Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»Π°. И Ρ‚Π°ΠΊ Π½Π°Ρ‡Π½Π΅ΠΌ:

Вспомним, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ?

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ, называСтся Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΡƒΠ³Π»ΠΎΠ² прямой (составляСт 90 градусов). Π”Π²Π΅ стороны ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‚ ΠΊ прямому ΡƒΠ³Π»Ρƒ, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΊΠ°Ρ‚Π΅Ρ‚Π°ΠΌΠΈ, Π° сторона лСТащая Π½Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ² прямого ΡƒΠ³Π»Π°, называСтся Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·ΠΎΠΉ.

Бинус (sin(a)) β€” это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π΅;

ΠšΠΎΡΠΈΠ½ΡƒΡ (cos(a)) β€” это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π΅;

ВангСнс (tg(a)) β€” это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅ΠΌΡƒ ΠΊΠ°Ρ‚Π΅Ρ‚Ρƒ;
Π”Ρ€ΡƒΠ³ΠΎΠ΅ (Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΠ΅) ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: тангСнсом острого ΡƒΠ³Π»Π° называСтся ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ синуса ΡƒΠ³Π»Π° ΠΊ Π΅Π³ΠΎ косинусу;

ΠšΠΎΡ‚Π°Π½Π³Π΅Π½Ρ (ctg(a)) β€” это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅ΠΌΡƒ.
Π”Ρ€ΡƒΠ³ΠΎΠ΅ (Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΠ΅) ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: котангСнсом острого ΡƒΠ³Π»Π° называСтся ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ косинуса ΡƒΠ³Π»Π° ΠΊ Π΅Π³ΠΎ синусу;

ΠŸΡƒΡΡ‚ΡŒ Π΄Π°Π½ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ABC с прямым ΡƒΠ³Π»ΠΎΠΌ C.

Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π€ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ Найти sin(a); cos(a); tg(a); ctg(a) Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π€ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ сторон Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅

Аналогично рассуТдаСм ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠ³Π»Π° B.

Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π€ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ Найти sin(b); cos(b); tg(b); ctg(b) Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π€ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ сторон Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

Найти тангСнс ΡƒΠ³Π»Π° Π‘ (tg(C)) Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABC.

Π₯ΠΎΡ‡Π΅ΡˆΡŒ Π³ΠΎΡ‚ΠΎΠ²ΠΈΡ‚ΡŒΡΡ ΠΊ экзамСнам бСсплатно? Π Π΅ΠΏΠ΅Ρ‚ΠΈΡ‚ΠΎΡ€ ΠΎΠ½Π»Π°ΠΉΠ½ бСсплатно. Π‘Π΅Π· ΡˆΡƒΡ‚ΠΎΠΊ. Π—Π”Π•Π‘Π¬

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ВригономСтрия являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π°ΠΆΠ½Ρ‹Ρ… Ρ€Π°Π·Π΄Π΅Π»ΠΎΠ² Π°Π»Π³Π΅Π±Ρ€Ρ‹ ΠΈ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ для изучСния Π² срСднСй школС. Π­Ρ‚Π° Π½Π°ΡƒΠΊΠ° Π±Π΅Ρ€Π΅Ρ‚ своС Π½Π°Ρ‡Π°Π»ΠΎ Π΅Ρ‰Π΅ со Π²Ρ€Π΅ΠΌΠ΅Π½ Π°Π½Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Π“Ρ€Π΅Ρ†ΠΈΠΈ. Π’ срСдниС Π²Π΅ΠΊΠ° Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ вСсомый Π²ΠΊΠ»Π°Π΄ Π² ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ внСсли страны Π‘Π»ΠΈΠΆΠ½Π΅Π³ΠΎ Востока, Π° Ρ‚Π°ΠΊΠΆΠ΅ Индия.

Π—Π°Ρ‡Π°ΡΡ‚ΡƒΡŽ Π² процСссС изучСния Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° учащиСся ΠΈΡΠΏΡ‹Ρ‚Ρ‹Π²Π°ΡŽΡ‚ слоТности Π² ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ Π½ΠΎΠ²ΠΎΠΉ Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠ»ΠΎΠ³ΠΈΠΈ, особСнно Ссли ΠΎΠ½Π° Π½ΠΈΠΊΠ°ΠΊ Π½Π΅ связана с ΡƒΠΆΠ΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ Ρ€Π°Π½Π΅Π΅ знаниями. Однако Π²Π°ΠΆΠ½ΠΎ ΠΎΡΠΎΠ·Π½Π°Π²Π°Ρ‚ΡŒ Π²Π°ΠΆΠ½ΠΎΡΡ‚ΡŒ усвоСния Π±Π°Π·ΠΎΠ²Ρ‹Ρ… основ любой Ρ‚Π΅ΠΌΡ‹, вСдь ΠΎΡ‚ этого, Π² ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, зависит ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΡΡ‚ΡŒ дальнСйшСго обучСния Ρ€Π΅Π±Π΅Π½ΠΊΠ°. Π’ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΌΡ‹ рассмотрим Ρ‚Π°ΠΊΠΎΠΉ тригономСтричСский Ρ‚Π΅Ρ€ΠΌΠΈΠ½, ΠΊΠ°ΠΊ sin ΡƒΠ³Π»Π°, с ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, ΠΈ начинаСтся вся тригономСтрия.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Рассмотрим гСомСтричСский смысл Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Для ΠΎΠ±Π»Π΅Π³Ρ‡Π΅Π½Π½ΠΎΠ³ΠΎ понимания объясним ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ с использованиСм Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ рисунка:

Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π€ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ рассмотрим алгСбраичСский смысл.

Если Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Ρ‚Π΅Ρ€ΠΌΠΈΠ½ «ΡΠΈΠ½ΡƒΡ» с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния этого Ρ€Π°Π·Π΄Π΅Π»Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, Ρ‚ΠΎ Π½Π°ΠΌ стоит ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒΡΡ ΠΊ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠŸΠΎΠ½Π°Π΄ΠΎΠ±ΠΈΡ‚ΡΡ Сдиничная ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ (радиус ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π°Π²Π΅Π½ ΠΎΠ΄Π½ΠΎΠΉ условной Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅) с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π€ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ

ΠžΡ‚Π»ΠΎΠΆΠΈΠΌ Π½Π΅ΠΊΠΈΠΉ ΡƒΠ³ΠΎΠ», Ρ€Π°Π²Π½Ρ‹ΠΉ Π°Π»ΡŒΡ„Π° ΠΎΡ‚ оси абсцисс. Π’Ρ‚ΠΎΡ€ΠΎΠΉ Π»ΡƒΡ‡, ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠΉ Π΄Π°Π½Π½Ρ‹ΠΉ ΡƒΠ³ΠΎΠ», пСрСсСкаСт Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΡƒΡŽ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ А. Она Π½Π°ΠΌ ΠΈ потрСбуСтся, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ Π΅Π΅ вторая ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°. Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π΅Π΅ числСнно Ρ€Π°Π²Π½ΠΎ синусу ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°.

ΠžΠ±Π»Π°ΡΡ‚ΠΈ опрСдСлСния ΠΈ допустимых Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ

НапоминаСм ΠΎΠ±Ρ‰ΠΈΠΉ случай. ΠžΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ принято ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ D(f), Π° находится ΠΎΠ½Π° ΠΏΠΎ оси абсцисс. Π’ свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ допустимых Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ обозначаСтся ΠΊΠ°ΠΊ E(f), Π° Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Π΅Π΅ слСдуСт ΠΏΠΎ оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ГСомСтрия. Π£Ρ€ΠΎΠΊ 1. ВригономСтрия

Π‘ΠΌΠΎΡ‚Ρ€ΠΈΡ‚Π΅ бСсплатныС Π²ΠΈΠ΄Π΅ΠΎ-ΡƒΡ€ΠΎΠΊΠΈ ΠΏΠΎ Ρ‚Π΅ΠΌΠ΅ β€œΠ’Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡβ€ Π½Π° ΠΊΠ°Π½Π°Π»Π΅ ЁТику ΠŸΠΎΠ½ΡΡ‚Π½ΠΎ.

Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π€ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ

Π’ΠΈΠ΄Π΅ΠΎ-ΡƒΡ€ΠΎΠΊΠΈ Π½Π° ΠΊΠ°Π½Π°Π»Π΅ ЁТику ΠŸΠΎΠ½ΡΡ‚Π½ΠΎ. Подпишись!

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ страницы:

ВригономСтрия Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅

Рассмотрим ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· острых ΡƒΠ³Π»ΠΎΠ² Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊ Π½Π΅ΠΌΡƒ ΠΊΠ°Ρ‚Π΅Ρ‚ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ.

Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π€ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ

Бинус ΡƒΠ³Π»Π° – ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π΅.

sin Ξ± = ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π°

ΠšΠΎΡΠΈΠ½ΡƒΡ ΡƒΠ³Π»Π° – ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π΅.

cos Ξ± = ΠŸΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π°

ВангСнс ΡƒΠ³Π»Π° – ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅ΠΌΡƒ (ΠΈΠ»ΠΈ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ синуса ΠΊ косинусу).

tg Ξ± = ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚ ΠŸΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚

ΠšΠΎΡ‚Π°Π½Π³Π΅Π½Ρ ΡƒΠ³Π»Π° – ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅ΠΌΡƒ (ΠΈΠ»ΠΈ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ косинуса ΠΊ синусу).

ctg Ξ± = ΠŸΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚ ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚

tg ∠ A = sin ∠ A cos ∠ A = C B A C

ctg ∠ A = cos ∠ A sin ∠ A = A C C B

tg ∠ B = sin ∠ B cos ∠ B = A C C B

ctg ∠ B = cos ∠ B sin ∠ B = C B A C

ВригономСтрия: ВригономСтричСский ΠΊΡ€ΡƒΠ³

ВригономСтрия Π½Π° окруТности – это довольно интСрСсная абстракция Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Если ΠΏΠΎΠ½ΡΡ‚ΡŒ основной ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠ³ΠΎ β€œΡ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΎΠ³ΠΎ круга”, Ρ‚ΠΎ вся тригономСтрия Π±ΡƒΠ΄Π΅Ρ‚ Π²Π°ΠΌ подвластна. Π’ описании ΠΊ Π²ΠΈΠ΄Π΅ΠΎ Π΅ΡΡ‚ΡŒ динамичСская модСль тригономСтричСского ΠΊΡ€ΡƒΠ³Π°.

ВригономСтричСский ΠΊΡ€ΡƒΠ³ – это ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠ³ΠΎ радиуса с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Рассмотрим ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ A O B :

cos Ξ± = O B O A = O B 1 = O B

sin Ξ± = A B O A = A B 1 = A B

Π˜Ρ‚Π°ΠΊ, косинус ΡƒΠ³Π»Π° – ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠΈ A ΠΏΠΎ оси x (ось абсцисс), синус ΡƒΠ³Π»Π° – ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠΈ A ΠΏΠΎ оси y (ось ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚).

Π”Π°Π²Π°ΠΉΡ‚Π΅ рассмотрим Π΅Ρ‰Π΅ ΠΎΠ΄ΠΈΠ½ случай, ΠΊΠΎΠ³Π΄Π° ΡƒΠ³ΠΎΠ» Ξ± – Ρ‚ΡƒΠΏΠΎΠΉ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ большС 90 Β° :

Π•Ρ‰Ρ‘ ΠΎΠ΄Π½ΠΎ Π·Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅.

Бинус Ρ‚ΡƒΠΏΠΎΠ³ΠΎ ΡƒΠ³Π»Π° – ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, Π° косинус – ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ.

ОсновноС тригономСтричСскоС тоТдСство

sin 2 Ξ± + cos 2 Ξ± = 1

Π”Π°Π½Π½ΠΎΠ΅ тоТдСство – Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ O A B :

A B 2 + O B 2 = O A 2

sin 2 Ξ± + cos 2 Ξ± = R 2

sin 2 Ξ± + cos 2 Ξ± = 1

ВригономСтрия: Π’Π°Π±Π»ΠΈΡ†Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

0 Β°30 Β°45 Β°60 Β°90 Β°sin Ξ±01 22 23 21cos Ξ±13 22 21 20tg Ξ±03 313Π½Π΅Ρ‚ctg Ξ±Π½Π΅Ρ‚313 30

ВригономСтрия: градусы ΠΈ Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹

Как пСрСвСсти градусы Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹, Π° Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ Π² градусы? Как ΠΈ ΠΊΠΎΠ³Π΄Π° Π²ΠΎΠ·Π½ΠΈΠΊΠ»Π° градусная ΠΌΠ΅Ρ€Π° ΡƒΠ³Π»Π°? Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ ΠΈ радианная ΠΌΠ΅Ρ€Π° ΡƒΠ³Π»Π°? Π˜Ρ‰ΠΈΡ‚Π΅ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹ Π² этом Π²ΠΈΠ΄Π΅ΠΎ!

ВригономСтрия: Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ привСдСния

ВригономСтрия Π½Π° окруТности ΠΈΠΌΠ΅Π΅Ρ‚ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ закономСрности. Если Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π΄Π°Π½Π½Ρ‹ΠΉ рисунок,

ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ:

sin 180 Β° = sin ( 180 Β° βˆ’ 0 Β° ) = sin 0 Β°

sin 150 Β° = sin ( 180 Β° βˆ’ 30 Β° ) = sin 30 Β°

sin 135 Β° = sin ( 180 Β° βˆ’ 45 Β° ) = sin 45 Β°

sin 120 Β° = sin ( 180 Β° βˆ’ 60 Β° ) = sin 60 Β°

cos 180 Β° = cos ( 180 Β° βˆ’ 0 Β° ) = βˆ’ cos 0 Β°

cos 150 Β° = cos ( 180 Β° βˆ’ 30 Β° ) = βˆ’ cos 30 Β°

cos 135 Β° = cos ( 180 Β° βˆ’ 45 Β° ) = βˆ’ cos 45 Β°

cos 120 Β° = cos ( 180 Β° βˆ’ 60 Β° ) = βˆ’ cos 60 Β°

Рассмотрим Ρ‚ΡƒΠΏΠΎΠΉ ΡƒΠ³ΠΎΠ» Ξ² :

Для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚ΡƒΠΏΠΎΠ³ΠΎ ΡƒΠ³Π»Π° Ξ² = 180 Β° βˆ’ Ξ± всСгда Π±ΡƒΠ΄ΡƒΡ‚ справСдливы ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ равСнства:

sin ( 180 Β° βˆ’ Ξ± ) = sin Ξ±

cos ( 180 Β° βˆ’ Ξ± ) = βˆ’ cos Ξ±

tg ( 180 Β° βˆ’ Ξ± ) = βˆ’ tg Ξ±

ctg ( 180 Β° βˆ’ Ξ± ) = βˆ’ ctg Ξ±

ВригономСтрия: Π’Π΅ΠΎΡ€Π΅ΠΌΠ° синусов

Π’ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ стороны ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ синусам ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΡ… ΡƒΠ³Π»ΠΎΠ².

a sin ∠ A = b sin ∠ B = c sin ∠ C

ВригономСтрия: Π Π°ΡΡˆΠΈΡ€Π΅Π½Π½Π°Ρ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° синусов

ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ стороны ΠΊ синусу ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΡƒΠ³Π»Π° Ρ€Π°Π²Π½ΠΎ Π΄Π²ΡƒΠΌ радиусам описанной Π²ΠΎΠΊΡ€ΡƒΠ³ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° окруТности.

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R

ВригономСтрия: Π’Π΅ΠΎΡ€Π΅ΠΌΠ° косинусов

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ стороны Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ€Π°Π²Π΅Π½ суммС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π΄Π²ΡƒΡ… Π΄Ρ€ΡƒΠ³ΠΈΡ… сторон минус ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ этих сторон Π½Π° косинус ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ.

a 2 = b 2 + c 2 βˆ’ 2 b c β‹… cos ∠ A

b 2 = a 2 + c 2 βˆ’ 2 a c β‹… cos ∠ B

c 2 = a 2 + b 2 βˆ’ 2 a b β‹… cos ∠ C

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΈΠ· ΠžΠ“Π­

ΠœΠΎΠ΄ΡƒΠ»ΡŒ гСомСтрия: задания, связанныС с Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ΅ΠΉ.

ВригономСтрия: ВригономСтричСскиС уравнСния

Π­Ρ‚ΠΎ Ρ‚Π΅ΠΌΠ° 10-11 классов.

Из сСрии Π²ΠΈΠ΄Π΅ΠΎ Π½ΠΈΠΆΠ΅ Π²Ρ‹ ΡƒΠ·Π½Π°Π΅Ρ‚Π΅, ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠ΅ тригономСтричСскиС уравнСния, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ тригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π·Π°Ρ‡Π΅ΠΌ ΠΎΠ½ΠΈ Π½ΡƒΠΆΠ½Ρ‹ ΠΈ ΠΊΠ°ΠΊ ΠΈΡ… ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ. Если Π²Ρ‹ ΠΏΠΎΠΉΠΌΡ‘Ρ‚Π΅ эти Π±Π°Π·ΠΎΠ²Ρ‹Π΅ Ρ‚Π΅ΠΌΡ‹, Ρ‚ΠΎ вскорС смоТСтС Π±Π΅Π· ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π»ΡŽΠ±Ρ‹Π΅ тригономСтричСскиС уравнСния любого уровня слоТности!

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Бинус, косинус, тангСнс ΠΈ котангСнс: опрСдСлСния Π² Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹, Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹

Данная ΡΡ‚Π°Ρ‚ΡŒΡ посвящСна Π±Π°Π·ΠΎΠ²Ρ‹ΠΌ понятиям ΠΈ дСфинициям Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π’ Π½Π΅ΠΉ рассмотрСны опрСдСлСния основных тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ: синуса, косинуса, тангСнса ΠΈ котангСнса. РазъяснСн ΠΈ ΠΏΡ€ΠΎΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ ΠΈΡ… смысл Π² контСкстС Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ.

Бинус, косинус, тангСнс ΠΈ котангСнс. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡ

Π˜Π·Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ опрСдСлСния тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠΌ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… являСтся ΡƒΠ³ΠΎΠ», Π²Ρ‹Ρ€Π°ΠΆΠ°Π»ΠΈΡΡŒ Ρ‡Π΅Ρ€Π΅Π· ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ сторон ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Π”Π°Π½Π½Ρ‹Π΅ опрСдСлСния Π΄Π°Π½Ρ‹ для острого ΡƒΠ³Π»Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°!

Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π€ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ

Π’ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ ABC с прямым ΡƒΠ³Π»ΠΎΠΌ Π‘ синус ΡƒΠ³Π»Π° А Ρ€Π°Π²Π΅Π½ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊΠ°Ρ‚Π΅Ρ‚Π° BC ΠΊ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π΅ AB.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡ синуса, косинуса, тангСнса ΠΈ котангСнса ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ значСния этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΏΠΎ извСстным Π΄Π»ΠΈΠ½Π°ΠΌ сторон Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Π£Π³ΠΎΠ» ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π°

Π’ Π΄Π°Π½Π½ΠΎΠΌ контСкстС ΠΌΠΎΠΆΠ½ΠΎ Π΄Π°Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ синуса, косинуса, тангСнса ΠΈ котангСнса ΡƒΠ³Π»Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΠΌ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΡƒΡŽ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Π½Π°Ρ‡Π°Π»Π΅ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π€ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ

Бинус (sin) ΡƒΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π°

ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ практичСских ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² Π½Π΅ говорят «ΡΠΈΠ½ΡƒΡ ΡƒΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π° Ξ± «. Π‘Π»ΠΎΠ²Π° «ΡƒΠ³ΠΎΠ» ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π°» просто ΠΎΠΏΡƒΡΠΊΠ°ΡŽΡ‚, подразумСвая, Ρ‡Ρ‚ΠΎ ΠΈΠ· контСкста ΠΈ Ρ‚Π°ΠΊ понятно, ΠΎ Ρ‡Π΅ΠΌ ΠΈΠ΄Π΅Ρ‚ Ρ€Π΅Ρ‡ΡŒ.

Числа

Как Π±Ρ‹Ρ‚ΡŒ с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ синуса, косинуса, тангСнса ΠΈ котангСнса числа, Π° Π½Π΅ ΡƒΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π°?

Бинус, косинус, тангСнс, котангСнс числа

Бинусом, косинусом, тангСнсом ΠΈ котангСнсом числа t называСтся число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ соотвСтствСнно Ρ€Π°Π²Π½ΠΎ синусу, косинусу, тангСнсу ΠΈ котангСнсу Π² t Ρ€Π°Π΄ΠΈΠ°Π½.

НапримСр, синус числа 10 Ο€ Ρ€Π°Π²Π΅Π½ синусу ΡƒΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ 10 Ο€ Ρ€Π°Π΄.

БущСствуСт ΠΈ Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ синуса, косинуса, тангСнса ΠΈ котангСнса числа. Рассмотрим Π΅Π³ΠΎ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅.

Π›ΡŽΠ±ΠΎΠΌΡƒ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ числу t ставится Π² соотвСтствиС Ρ‚ΠΎΡ‡ΠΊΠ° Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ окруТности с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Бинус, косинус, тангСнс ΠΈ котангСнс ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ этой Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ, ΠΊΠΎΠ³Π΄Π° связь числа ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° окруТности установлСна, ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΠΌ ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ синуса, косинуса, тангСнса ΠΈ котангСнса.

ПослСдниС опрСдСлСния находятся Π² соотвСтствии ΠΈ Π½Π΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡Π°Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ, Π΄Π°Π½Π½ΠΎΠΌΡƒ Π² Π½Π°Ρ‡Π°Π»Π΅ это ΠΏΡƒΠ½ΠΊΡ‚Π°. Π’ΠΎΡ‡ΠΊΠ° Π½Π° окруТности, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ числу t, совпадаСт с Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΡ‚ Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° послС ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π° Π½Π° ΡƒΠ³ΠΎΠ» t Ρ€Π°Π΄ΠΈΠ°Π½.

ВригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡƒΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΈ числового Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Из контСкста ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ понятно, с ΠΊΠ°ΠΊΠΈΠΌ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠΌ тригономСтричСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ ΠΈΠ»ΠΈ числовой Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚) ΠΌΡ‹ ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π΅Π»ΠΎ.

Бвязь ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ sin, cos, tg ΠΈ ctg ΠΈΠ· Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΈ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ВСрнСмся ΠΊ Π΄Π°Π½Π½Ρ‹ΠΌ Π² самом Π½Π°Ρ‡Π°Π»Π΅ опрСдСлСниям ΠΈ ΡƒΠ³Π»Ρƒ Π°Π»ΡŒΡ„Π°, Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΌΡƒ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ΠΎΡ‚ 0 Π΄ΠΎ 90 градусов. ВригономСтричСскиС опрСдСлСния синуса, косинуса, тангСнса ΠΈ котангСнса ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‚ΡΡ с гСомСтричСскими опрСдСлСниями, Π΄Π°Π½Π½Ρ‹ΠΌΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ сторон ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ПокаТСм это.

Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ. Π€ΠΎΡ‚ΠΎ Sin ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅ΠΌΡƒ ΠΊ Ρ‡Π΅ΠΌΡƒ

Π’ соотвСтствии с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈΠ· Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, синус ΡƒΠ³Π»Π° Ξ± Ρ€Π°Π²Π΅Π½ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π΅.

sin Ξ± = A 1 H O A 1 = y 1 = y

Аналогично соотвСтствиС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ для косинуса, тангСнса ΠΈ котангСнса.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *