Sin ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΠΌΡ ΠΊ ΡΠ΅ΠΌΡ
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ ΠΏΡΠΎΡΡΡΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ
ΠΡΠΈΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΠΎΠ±ΡΡΡΠ½Π΅Π½ΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΡΠΈΡΠ°ΡΡ Π² ΡΡΠ΅Π±Π½ΠΈΠΊΠ°Ρ ΠΈΠ»ΠΈ Π½Π° Π΄ΡΡΠ³ΠΈΡ ΠΈΠ½ΡΠ΅ΡΠ½Π΅Ρ ΡΠ°ΠΉΡΠ°Ρ , Π° Π² ΡΡΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΠΌΡ Ρ ΠΎΡΠΈΠΌ ΠΎΠ±ΡΡΡΠ½ΠΈΡΡ ΡΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ «Π½Π° ΠΏΠ°Π»ΡΡΠ°Ρ ».
ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° ΡΠ°Π±ΠΎΡΡ Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ Π±ΡΠ» ΠΏΡΠΈΠ΄ΡΠΌΠ°Π½ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΡΡΠ³, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ Ρ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΡΠΌ ΡΠ°Π΄ΠΈΡΡΠΎΠΌ (r = 1).
Π’ΠΎΠ³Π΄Π° ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠ°Π΄ΠΈΡΡΠ° Π½Π° ΠΎΡΠΈ X ΠΈ Y (OB ΠΈ OA’) ΡΠ°Π²Π½Ρ ΠΊΠ°ΡΠ΅ΡΠ°ΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΠΠ, ΠΊΠΎΡΠΎΡΡΠ΅ Π² ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ ΡΠ°Π²Π½Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ ΡΠΈΠ½ΡΡΠ° ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ° Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π°.
Π’Π°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΠΏΠΎΠ»ΡΡΠ°ΡΡΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΡΠ²Π΅Π½Π½ΠΎ ΠΈΠ· ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² OCD ΠΈ OC’D’, ΠΏΠΎΡΡΡΠΎΠ΅Π½Π½ΡΡ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠΌΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΡ OAB.
ΠΠ»Ρ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΡΠ½ΠΊΡΠΈΡΠΌ Π² ΡΠΊΠΎΠ»Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ΄ΠΎΠ±Π½ΡΠ΅ ΡΠ³Π»Ρ Π² 0Β°, 30Β°, 45Β°, 60Β° ΠΈ 90Β°.
ΠΠ½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ ΠΊΠ°ΠΆΠ΄ΡΠ΅ 90Β° ΠΈ Π² Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΡΠ»ΡΡΠ°ΡΡ ΠΌΠ΅Π½ΡΡ Π·Π½Π°ΠΊ Π½Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ.
ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ Π²Π°ΠΆΠ½ΡΡ ΡΠ³Π»ΠΎΠ² ΠΈ ΠΏΠΎΠ½ΡΡΡ ΠΏΡΠΈΠ½ΡΠΈΠΏ ΠΏΠΎΠ²ΡΠΎΡΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π΄Π»Ρ Π±ΠΠ»ΡΡΠΈΡ ΡΠ³Π»ΠΎΠ².
ΠΠ½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ
Π΄Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΠ΅ΡΠ²Π΅ΡΡΠΈ ΠΊΡΡΠ³Π° (0Β° β 90Β°)
ΠΡΠΈΠ½ΡΠΈΠΏ ΠΏΠΎΠ²ΡΠΎΡΠ° Π·Π½Π°ΠΊΠΎΠ² ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
Π£Π³ΠΎΠ» ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ, ΡΠ°ΠΊ ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ. ΠΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» ΡΡΠΈΡΠ°Π΅ΡΡΡ ΡΠ³ΠΎΠ», ΠΎΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌΡΠΉ Π² ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΡ ΡΡΠΎΡΠΎΠ½Ρ.
Π Π²ΠΈΠ΄Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΠΏΠΎΠ»Π½Π°Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 360Β°, Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠ³Π»ΠΎΠ², ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠΈΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°Π΄ΠΈΡΡΠ°, Π ΠΠΠΠ«.
ΠΠ»Ρ Π»ΡΡΡΠ΅Π³ΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ ΠΈ Π·Π°ΠΏΠΎΠΌΠΈΠ½Π°Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ΡΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΌΠ°ΠΊΠ΅ΡΠΎΠΌ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΡΡΠ³Π° Π½ΠΈΠΆΠ΅. ΠΠ°ΠΆΠΈΠΌΠ°Ρ ΠΊΠ½ΠΎΠΏΠΊΠΈ Β«+Β» ΠΈ Β«βΒ» Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ³Π»Π° Π±ΡΠ΄ΡΡ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°ΡΡΡΡ ΠΈΠ»ΠΈ ΡΠΌΠ΅Π½ΡΡΠ°ΡΡΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ.
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΡΡΠ³
Π£Π³Π»Ρ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ
Π§ΡΠΎΠ±Ρ Π·Π°ΠΊΡΠ΅ΠΏΠΈΡΡ ΡΠ²ΠΎΠΈ Π·Π½Π°Π½ΠΈΡ ΠΈ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΡΠ΅Π±Ρ, Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ΡΡ ΠΎΠ½Π»Π°ΠΉΠ½-ΡΡΠ΅Π½Π°ΠΆΠ΅ΡΠΎΠΌ Π΄Π»Ρ Π·Π°ΠΏΠΎΠΌΠΈΠ½Π°Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅?
Π‘ΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ ΠΈ ΡΠ°Π½Π³Π΅Π½Ρ ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
ΠΡΠΈΠ²Π΅ΡΡΡΠ²ΡΡ ΠΠ°Ρ Π΄ΠΎΡΠΎΠ³ΠΈΠ΅ ΡΡΠ°ΡΠΈΠ΅ΡΡ.
Π‘Π΅ΠΉΡΠ°Ρ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠΎ ΠΆΠ΅ ΡΠ°ΠΊΠΎΠ΅ ΡΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅?
ΠΡΠΎ ΡΠ΅ΠΌΠ° Π½Π΅ ΡΠ»ΠΎΠΆΠ½Π°Ρ, Π³Π»Π°Π²Π½ΠΎΠ΅ ΡΡΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»Π°. Π ΡΠ°ΠΊ Π½Π°ΡΠ½Π΅ΠΌ:
ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ?
ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠΌ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΡΠ³Π»ΠΎΠ² ΠΏΡΡΠΌΠΎΠΉ (ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 90 Π³ΡΠ°Π΄ΡΡΠΎΠ²). ΠΠ²Π΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΈΠ»Π΅ΠΆΠ°Ρ ΠΊ ΠΏΡΡΠΌΠΎΠΌΡ ΡΠ³Π»Ρ, Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΠΊΠ°ΡΠ΅ΡΠ°ΠΌΠΈ, Π° ΡΡΠΎΡΠΎΠ½Π° Π»Π΅ΠΆΠ°ΡΠ°Ρ Π½Π°ΠΏΡΠΎΡΠΈΠ² ΠΏΡΡΠΌΠΎΠ³ΠΎ ΡΠ³Π»Π°, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·ΠΎΠΉ.
Π‘ΠΈΠ½ΡΡ (sin(a)) β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅;
ΠΠΎΡΠΈΠ½ΡΡ (cos(a)) β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅;
Π’Π°Π½Π³Π΅Π½Ρ (tg(a)) β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ ΠΊΠ°ΡΠ΅ΡΡ;
ΠΡΡΠ³ΠΎΠ΅ (ΡΠ°Π²Π½ΠΎΡΠΈΠ»ΡΠ½ΠΎΠ΅) ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: ΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠΈΠ½ΡΡΠ° ΡΠ³Π»Π° ΠΊ Π΅Π³ΠΎ ΠΊΠΎΡΠΈΠ½ΡΡΡ;
ΠΠΎΡΠ°Π½Π³Π΅Π½Ρ (ctg(a)) β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ.
ΠΡΡΠ³ΠΎΠ΅ (ΡΠ°Π²Π½ΠΎΡΠΈΠ»ΡΠ½ΠΎΠ΅) ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΡΠ³Π»Π° ΠΊ Π΅Π³ΠΎ ΡΠΈΠ½ΡΡΡ;
ΠΡΡΡΡ Π΄Π°Π½ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ABC Ρ ΠΏΡΡΠΌΡΠΌ ΡΠ³Π»ΠΎΠΌ C.


ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΡΠ°ΡΡΡΠΆΠ΄Π°Π΅ΠΌ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ³Π»Π° B.


ΠΡΠΈΠΌΠ΅Ρ:
ΠΠ°ΠΉΡΠΈ ΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° Π‘ (tg(C)) ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ABC.
Π₯ΠΎΡΠ΅ΡΡ Π³ΠΎΡΠΎΠ²ΠΈΡΡΡΡ ΠΊ ΡΠΊΠ·Π°ΠΌΠ΅Π½Π°ΠΌ Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΠΎ? Π Π΅ΠΏΠ΅ΡΠΈΡΠΎΡ ΠΎΠ½Π»Π°ΠΉΠ½ Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΠΎ. ΠΠ΅Π· ΡΡΡΠΎΠΊ. ΠΠΠΠ‘Π¬
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π°ΠΆΠ½ΡΡ ΡΠ°Π·Π΄Π΅Π»ΠΎΠ² Π°Π»Π³Π΅Π±ΡΡ ΠΈ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ Π΄Π»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π² ΡΡΠ΅Π΄Π½Π΅ΠΉ ΡΠΊΠΎΠ»Π΅. ΠΡΠ° Π½Π°ΡΠΊΠ° Π±Π΅ΡΠ΅Ρ ΡΠ²ΠΎΠ΅ Π½Π°ΡΠ°Π»ΠΎ Π΅ΡΠ΅ ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ Π°Π½ΡΠΈΡΠ½ΠΎΠΉ ΠΡΠ΅ΡΠΈΠΈ. Π ΡΡΠ΅Π΄Π½ΠΈΠ΅ Π²Π΅ΠΊΠ° Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π΅ΡΠΎΠΌΡΠΉ Π²ΠΊΠ»Π°Π΄ Π² ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π½Π° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ Π²Π½Π΅ΡΠ»ΠΈ ΡΡΡΠ°Π½Ρ ΠΠ»ΠΈΠΆΠ½Π΅Π³ΠΎ ΠΠΎΡΡΠΎΠΊΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΠ½Π΄ΠΈΡ.
ΠΠ°ΡΠ°ΡΡΡΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΡΡΠ°ΡΠΈΠ΅ΡΡ ΠΈΡΠΏΡΡΡΠ²Π°ΡΡ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ Π² ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ Π½ΠΎΠ²ΠΎΠΉ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠ»ΠΎΠ³ΠΈΠΈ, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ Π΅ΡΠ»ΠΈ ΠΎΠ½Π° Π½ΠΈΠΊΠ°ΠΊ Π½Π΅ ΡΠ²ΡΠ·Π°Π½Π° Ρ ΡΠΆΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΌΠΈ ΡΠ°Π½Π΅Π΅ Π·Π½Π°Π½ΠΈΡΠΌΠΈ. ΠΠ΄Π½Π°ΠΊΠΎ Π²Π°ΠΆΠ½ΠΎ ΠΎΡΠΎΠ·Π½Π°Π²Π°ΡΡ Π²Π°ΠΆΠ½ΠΎΡΡΡ ΡΡΠ²ΠΎΠ΅Π½ΠΈΡ Π±Π°Π·ΠΎΠ²ΡΡ ΠΎΡΠ½ΠΎΠ² Π»ΡΠ±ΠΎΠΉ ΡΠ΅ΠΌΡ, Π²Π΅Π΄Ρ ΠΎΡ ΡΡΠΎΠ³ΠΎ, Π² ΠΏΠ΅ΡΠ²ΡΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ, Π·Π°Π²ΠΈΡΠΈΡ ΡΡΠΏΠ΅ΡΠ½ΠΎΡΡΡ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΡΠ΅Π±Π΅Π½ΠΊΠ°. Π Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΠΌΡ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ°ΠΊΠΎΠΉ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ΅ΡΠΌΠΈΠ½, ΠΊΠ°ΠΊ sin ΡΠ³Π»Π°, Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°ΡΡ, ΠΈ Π½Π°ΡΠΈΠ½Π°Π΅ΡΡΡ Π²ΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ»Ρ ΠΎΠ±Π»Π΅Π³ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ ΠΎΠ±ΡΡΡΠ½ΠΈΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΡΠ½ΠΊΠ°:
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ».
ΠΡΠ»ΠΈ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΡΠ΅ΡΠΌΠΈΠ½ «ΡΠΈΠ½ΡΡ» Ρ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΡΡΠΎΠ³ΠΎ ΡΠ°Π·Π΄Π΅Π»Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ, ΡΠΎ Π½Π°ΠΌ ΡΡΠΎΠΈΡ ΠΎΠ±ΡΠ°ΡΠΈΡΡΡΡ ΠΊ Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΠΎΠ½Π°Π΄ΠΎΠ±ΠΈΡΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ½Π°Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ (ΡΠ°Π΄ΠΈΡΡ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ°Π²Π΅Π½ ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ»ΠΎΠ²Π½ΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅) Ρ ΡΠ΅Π½ΡΡΠΎΠΌ Π² Π½Π°ΡΠ°Π»Π΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΡΠ»ΠΎΠΆΠΈΠΌ Π½Π΅ΠΊΠΈΠΉ ΡΠ³ΠΎΠ», ΡΠ°Π²Π½ΡΠΉ Π°Π»ΡΡΠ° ΠΎΡ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ. ΠΡΠΎΡΠΎΠΉ Π»ΡΡ, ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΠΉ Π΄Π°Π½Π½ΡΠΉ ΡΠ³ΠΎΠ», ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ Π² ΡΠΎΡΠΊΠ΅ Π. ΠΠ½Π° Π½Π°ΠΌ ΠΈ ΠΏΠΎΡΡΠ΅Π±ΡΠ΅ΡΡΡ, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ Π΅Π΅ Π²ΡΠΎΡΠ°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°. ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ Π΅Π΅ ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½ΠΎ ΡΠΈΠ½ΡΡΡ ΠΎΡΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π°.
ΠΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ
ΠΠ°ΠΏΠΎΠΌΠΈΠ½Π°Π΅ΠΌ ΠΎΠ±ΡΠΈΠΉ ΡΠ»ΡΡΠ°ΠΉ. ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈΠ½ΡΡΠΎ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ ΠΊΠ°ΠΊ D(f), Π° Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΎΠ½Π° ΠΏΠΎ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ. Π ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ ΠΎΠ±Π»Π°ΡΡΡ Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ ΠΊΠ°ΠΊ E(f), Π° Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ Π΅Π΅ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΏΠΎ ΠΎΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡ. Π£ΡΠΎΠΊ 1. Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ
Π‘ΠΌΠΎΡΡΠΈΡΠ΅ Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΡΠ΅ Π²ΠΈΠ΄Π΅ΠΎ-ΡΡΠΎΠΊΠΈ ΠΏΠΎ ΡΠ΅ΠΌΠ΅ βΠ’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡβ Π½Π° ΠΊΠ°Π½Π°Π»Π΅ ΠΠΆΠΈΠΊΡ ΠΠΎΠ½ΡΡΠ½ΠΎ.
ΠΠΈΠ΄Π΅ΠΎ-ΡΡΠΎΠΊΠΈ Π½Π° ΠΊΠ°Π½Π°Π»Π΅ ΠΠΆΠΈΠΊΡ ΠΠΎΠ½ΡΡΠ½ΠΎ. ΠΠΎΠ΄ΠΏΠΈΡΠΈΡΡ!
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΡΡΠ°Π½ΠΈΡΡ:
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ. ΠΠ»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΠΎΡΡΡΡΡ ΡΠ³Π»ΠΎΠ² Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊ Π½Π΅ΠΌΡ ΠΊΠ°ΡΠ΅Ρ ΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΠΉ.
Π‘ΠΈΠ½ΡΡ ΡΠ³Π»Π° β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅.
sin Ξ± = ΠΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊΠ°ΡΠ΅Ρ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π°
ΠΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π° β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅.
cos Ξ± = ΠΡΠΈΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊΠ°ΡΠ΅Ρ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π°
Π’Π°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ (ΠΈΠ»ΠΈ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠΈΠ½ΡΡΠ° ΠΊ ΠΊΠΎΡΠΈΠ½ΡΡΡ).
tg Ξ± = ΠΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊΠ°ΡΠ΅Ρ ΠΡΠΈΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊΠ°ΡΠ΅Ρ
ΠΠΎΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ (ΠΈΠ»ΠΈ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΠΊ ΡΠΈΠ½ΡΡΡ).
ctg Ξ± = ΠΡΠΈΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊΠ°ΡΠ΅Ρ ΠΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊΠ°ΡΠ΅Ρ
tg β A = sin β A cos β A = C B A C
ctg β A = cos β A sin β A = A C C B
tg β B = sin β B cos β B = A C C B
ctg β B = cos β B sin β B = C B A C
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ: Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΡΡΠ³
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ Π½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ β ΡΡΠΎ Π΄ΠΎΠ²ΠΎΠ»ΡΠ½ΠΎ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½Π°Ρ Π°Π±ΡΡΡΠ°ΠΊΡΠΈΡ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅. ΠΡΠ»ΠΈ ΠΏΠΎΠ½ΡΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅ΠΏΡ ΡΠ°ΠΊ Π½Π°Π·ΡΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ βΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΡΡΠ³Π°β, ΡΠΎ Π²ΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ Π±ΡΠ΄Π΅Ρ Π²Π°ΠΌ ΠΏΠΎΠ΄Π²Π»Π°ΡΡΠ½Π°. Π ΠΎΠΏΠΈΡΠ°Π½ΠΈΠΈ ΠΊ Π²ΠΈΠ΄Π΅ΠΎ Π΅ΡΡΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΡΡΠ³Π°.
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΡΡΠ³ β ΡΡΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π΄ΠΈΡΡΠ° Ρ ΡΠ΅Π½ΡΡΠΎΠΌ Π² Π½Π°ΡΠ°Π»Π΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ A O B :
cos Ξ± = O B O A = O B 1 = O B
sin Ξ± = A B O A = A B 1 = A B
ΠΡΠ°ΠΊ, ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π° β ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠΎΡΠΊΠΈ A ΠΏΠΎ ΠΎΡΠΈ x (ΠΎΡΡ Π°Π±ΡΡΠΈΡΡ), ΡΠΈΠ½ΡΡ ΡΠ³Π»Π° β ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠΎΡΠΊΠΈ A ΠΏΠΎ ΠΎΡΠΈ y (ΠΎΡΡ ΠΎΡΠ΄ΠΈΠ½Π°Ρ).
ΠΠ°Π²Π°ΠΉΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΅ΡΠ΅ ΠΎΠ΄ΠΈΠ½ ΡΠ»ΡΡΠ°ΠΉ, ΠΊΠΎΠ³Π΄Π° ΡΠ³ΠΎΠ» Ξ± β ΡΡΠΏΠΎΠΉ, ΡΠΎ Π΅ΡΡΡ Π±ΠΎΠ»ΡΡΠ΅ 90 Β° :
ΠΡΡ ΠΎΠ΄Π½ΠΎ Π·Π°ΠΌΠ΅ΡΠ°Π½ΠΈΠ΅.
Π‘ΠΈΠ½ΡΡ ΡΡΠΏΠΎΠ³ΠΎ ΡΠ³Π»Π° β ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, Π° ΠΊΠΎΡΠΈΠ½ΡΡ β ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ.
ΠΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ
sin 2 Ξ± + cos 2 Ξ± = 1
ΠΠ°Π½Π½ΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ β ΡΠ΅ΠΎΡΠ΅ΠΌΠ° ΠΠΈΡΠ°Π³ΠΎΡΠ° Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ O A B :
A B 2 + O B 2 = O A 2
sin 2 Ξ± + cos 2 Ξ± = R 2
sin 2 Ξ± + cos 2 Ξ± = 1
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ: Π’Π°Π±Π»ΠΈΡΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ: Π³ΡΠ°Π΄ΡΡΡ ΠΈ ΡΠ°Π΄ΠΈΠ°Π½Ρ
ΠΠ°ΠΊ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ Π³ΡΠ°Π΄ΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°Π½Ρ, Π° ΡΠ°Π΄ΠΈΠ°Π½Ρ Π² Π³ΡΠ°Π΄ΡΡΡ? ΠΠ°ΠΊ ΠΈ ΠΊΠΎΠ³Π΄Π° Π²ΠΎΠ·Π½ΠΈΠΊΠ»Π° Π³ΡΠ°Π΄ΡΡΠ½Π°Ρ ΠΌΠ΅ΡΠ° ΡΠ³Π»Π°? Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°Π΄ΠΈΠ°Π½Ρ ΠΈ ΡΠ°Π΄ΠΈΠ°Π½Π½Π°Ρ ΠΌΠ΅ΡΠ° ΡΠ³Π»Π°? ΠΡΠΈΡΠ΅ ΠΎΡΠ²Π΅ΡΡ Π² ΡΡΠΎΠΌ Π²ΠΈΠ΄Π΅ΠΎ!
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ: Π€ΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ Π½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΈΠΌΠ΅Π΅Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ. ΠΡΠ»ΠΈ Π²Π½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅ΡΡ Π΄Π°Π½Π½ΡΠΉ ΡΠΈΡΡΠ½ΠΎΠΊ,
ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ:
sin 180 Β° = sin ( 180 Β° β 0 Β° ) = sin 0 Β°
sin 150 Β° = sin ( 180 Β° β 30 Β° ) = sin 30 Β°
sin 135 Β° = sin ( 180 Β° β 45 Β° ) = sin 45 Β°
sin 120 Β° = sin ( 180 Β° β 60 Β° ) = sin 60 Β°
cos 180 Β° = cos ( 180 Β° β 0 Β° ) = β cos 0 Β°
cos 150 Β° = cos ( 180 Β° β 30 Β° ) = β cos 30 Β°
cos 135 Β° = cos ( 180 Β° β 45 Β° ) = β cos 45 Β°
cos 120 Β° = cos ( 180 Β° β 60 Β° ) = β cos 60 Β°
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠΏΠΎΠΉ ΡΠ³ΠΎΠ» Ξ² :
ΠΠ»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠΏΠΎΠ³ΠΎ ΡΠ³Π»Π° Ξ² = 180 Β° β Ξ± Π²ΡΠ΅Π³Π΄Π° Π±ΡΠ΄ΡΡ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°:
sin ( 180 Β° β Ξ± ) = sin Ξ±
cos ( 180 Β° β Ξ± ) = β cos Ξ±
tg ( 180 Β° β Ξ± ) = β tg Ξ±
ctg ( 180 Β° β Ξ± ) = β ctg Ξ±
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ: Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΡΠΈΠ½ΡΡΠΎΠ²
Π ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½Ρ ΡΠΈΠ½ΡΡΠ°ΠΌ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΡ ΡΠ³Π»ΠΎΠ².
a sin β A = b sin β B = c sin β C
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ: Π Π°ΡΡΠΈΡΠ΅Π½Π½Π°Ρ ΡΠ΅ΠΎΡΠ΅ΠΌΠ° ΡΠΈΠ½ΡΡΠΎΠ²
ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΊ ΡΠΈΠ½ΡΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΡΠ³Π»Π° ΡΠ°Π²Π½ΠΎ Π΄Π²ΡΠΌ ΡΠ°Π΄ΠΈΡΡΠ°ΠΌ ΠΎΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ Π²ΠΎΠΊΡΡΠ³ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
a sin β A = b sin β B = c sin β C = 2 R
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ: Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ²
ΠΠ²Π°Π΄ΡΠ°Ρ ΡΡΠΎΡΠΎΠ½Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π΅Π½ ΡΡΠΌΠΌΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² Π΄Π²ΡΡ Π΄ΡΡΠ³ΠΈΡ ΡΡΠΎΡΠΎΠ½ ΠΌΠΈΠ½ΡΡ ΡΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠΈΡ ΡΡΠΎΡΠΎΠ½ Π½Π° ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ.
a 2 = b 2 + c 2 β 2 b c β cos β A
b 2 = a 2 + c 2 β 2 a c β cos β B
c 2 = a 2 + b 2 β 2 a b β cos β C
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΈΠ· ΠΠΠ
ΠΠΎΠ΄ΡΠ»Ρ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡ: Π·Π°Π΄Π°Π½ΠΈΡ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠ΅ΠΉ.
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ: Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΡΠΎ ΡΠ΅ΠΌΠ° 10-11 ΠΊΠ»Π°ΡΡΠΎΠ².
ΠΠ· ΡΠ΅ΡΠΈΠΈ Π²ΠΈΠ΄Π΅ΠΎ Π½ΠΈΠΆΠ΅ Π²Ρ ΡΠ·Π½Π°Π΅ΡΠ΅, ΠΊΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, Π·Π°ΡΠ΅ΠΌ ΠΎΠ½ΠΈ Π½ΡΠΆΠ½Ρ ΠΈ ΠΊΠ°ΠΊ ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ. ΠΡΠ»ΠΈ Π²Ρ ΠΏΠΎΠΉΠΌΡΡΠ΅ ΡΡΠΈ Π±Π°Π·ΠΎΠ²ΡΠ΅ ΡΠ΅ΠΌΡ, ΡΠΎ Π²ΡΠΊΠΎΡΠ΅ ΡΠΌΠΎΠΆΠ΅ΡΠ΅ Π±Π΅Π· ΠΏΡΠΎΠ±Π»Π΅ΠΌ ΡΠ΅ΡΠ°ΡΡ Π»ΡΠ±ΡΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ!
Π‘ΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ: ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π² ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ, ΠΏΡΠΈΠΌΠ΅ΡΡ, ΡΠΎΡΠΌΡΠ»Ρ
ΠΠ°Π½Π½Π°Ρ ΡΡΠ°ΡΡΡ ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° Π±Π°Π·ΠΎΠ²ΡΠΌ ΠΏΠΎΠ½ΡΡΠΈΡΠΌ ΠΈ Π΄Π΅ΡΠΈΠ½ΠΈΡΠΈΡΠΌ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ. Π Π½Π΅ΠΉ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ: ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ°. Π Π°Π·ΡΡΡΠ½Π΅Π½ ΠΈ ΠΏΡΠΎΠΈΠ»Π»ΡΡΡΡΠΈΡΠΎΠ²Π°Π½ ΠΈΡ ΡΠΌΡΡΠ» Π² ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ΅ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ.
Π‘ΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ
ΠΠ·Π½Π°ΡΠ°Π»ΡΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ, Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΠΊΠΎΡΠΎΡΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ³ΠΎΠ», Π²ΡΡΠ°ΠΆΠ°Π»ΠΈΡΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΡΡΠΎΡΠΎΠ½ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΠ°Π½Π½ΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄Π°Π½Ρ Π΄Π»Ρ ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°!
Π ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ ABC Ρ ΠΏΡΡΠΌΡΠΌ ΡΠ³Π»ΠΎΠΌ Π‘ ΡΠΈΠ½ΡΡ ΡΠ³Π»Π° Π ΡΠ°Π²Π΅Π½ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊΠ°ΡΠ΅ΡΠ° BC ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅ AB.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π²ΡΡΠΈΡΠ»ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΏΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌ Π΄Π»ΠΈΠ½Π°ΠΌ ΡΡΠΎΡΠΎΠ½ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
Π£Π³ΠΎΠ» ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°
Π Π΄Π°Π½Π½ΠΎΠΌ ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π΄Π°ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠ³Π»Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. ΠΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠΌ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ Ρ ΡΠ΅Π½ΡΡΠΎΠΌ Π² Π½Π°ΡΠ°Π»Π΅ Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π‘ΠΈΠ½ΡΡ (sin) ΡΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°
ΠΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² Π½Π΅ Π³ΠΎΠ²ΠΎΡΡΡ «ΡΠΈΠ½ΡΡ ΡΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡΠΎΡΠ° Ξ± «. Π‘Π»ΠΎΠ²Π° «ΡΠ³ΠΎΠ» ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°» ΠΏΡΠΎΡΡΠΎ ΠΎΠΏΡΡΠΊΠ°ΡΡ, ΠΏΠΎΠ΄ΡΠ°Π·ΡΠΌΠ΅Π²Π°Ρ, ΡΡΠΎ ΠΈΠ· ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ° ΠΈ ΡΠ°ΠΊ ΠΏΠΎΠ½ΡΡΠ½ΠΎ, ΠΎ ΡΠ΅ΠΌ ΠΈΠ΄Π΅Ρ ΡΠ΅ΡΡ.
Π§ΠΈΡΠ»Π°
ΠΠ°ΠΊ Π±ΡΡΡ Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠΈΡΠ»Π°, Π° Π½Π΅ ΡΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°?
Π‘ΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ, ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΡΠΈΡΠ»Π°
Π‘ΠΈΠ½ΡΡΠΎΠΌ, ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠΌ, ΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠΎΠΌ ΡΠΈΡΠ»Π° t Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°Π²Π½ΠΎ ΡΠΈΠ½ΡΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡΡ, ΡΠ°Π½Π³Π΅Π½ΡΡ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΡ Π² t ΡΠ°Π΄ΠΈΠ°Π½.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠΈΠ½ΡΡ ΡΠΈΡΠ»Π° 10 Ο ΡΠ°Π²Π΅Π½ ΡΠΈΠ½ΡΡΡ ΡΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡΠΎΡΠ° Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ 10 Ο ΡΠ°Π΄.
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΈ Π΄ΡΡΠ³ΠΎΠΉ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠΈΡΠ»Π°. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΅Π³ΠΎ ΠΏΠΎΠ΄ΡΠΎΠ±Π½Π΅Π΅.
ΠΡΠ±ΠΎΠΌΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΡΠΈΡΠ»Ρ t ΡΡΠ°Π²ΠΈΡΡΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΡΠΎΡΠΊΠ° Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Ρ ΡΠ΅Π½ΡΡΠΎΠΌ Π² Π½Π°ΡΠ°Π»Π΅ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. Π‘ΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°Π½Π³Π΅Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ ΡΠ΅ΡΠ΅Π· ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΎΠΉ ΡΠΎΡΠΊΠΈ.
Π’Π΅ΠΏΠ΅ΡΡ, ΠΊΠΎΠ³Π΄Π° ΡΠ²ΡΠ·Ρ ΡΠΈΡΠ»Π° ΠΈ ΡΠΎΡΠΊΠΈ Π½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π°, ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΠΌ ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ°.
ΠΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ ΠΈ Π½Π΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠ°Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ, Π΄Π°Π½Π½ΠΎΠΌΡ Π² Π½Π°ΡΠ°Π»Π΅ ΡΡΠΎ ΠΏΡΠ½ΠΊΡΠ°. Π’ΠΎΡΠΊΠ° Π½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ°Ρ ΡΠΈΡΠ»Ρ t, ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ ΡΠΎΡΠΊΠΎΠΉ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΡ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ° ΠΏΠΎΡΠ»Π΅ ΠΏΠΎΠ²ΠΎΡΠΎΡΠ° Π½Π° ΡΠ³ΠΎΠ» t ΡΠ°Π΄ΠΈΠ°Π½.
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΈ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ
ΠΠ· ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ° ΠΎΠ±ΡΡΠ½ΠΎ ΠΏΠΎΠ½ΡΡΠ½ΠΎ, Ρ ΠΊΠ°ΠΊΠΈΠΌ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ (ΡΠ³Π»ΠΎΠ²ΠΎΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ ΠΈΠ»ΠΈ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ) ΠΌΡ ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π΅Π»ΠΎ.
Π‘Π²ΡΠ·Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ sin, cos, tg ΠΈ ctg ΠΈΠ· Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ ΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ
ΠΠ΅ΡΠ½Π΅ΠΌΡΡ ΠΊ Π΄Π°Π½Π½ΡΠΌ Π² ΡΠ°ΠΌΠΎΠΌ Π½Π°ΡΠ°Π»Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡΠΌ ΠΈ ΡΠ³Π»Ρ Π°Π»ΡΡΠ°, Π»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΠΎΡ 0 Π΄ΠΎ 90 Π³ΡΠ°Π΄ΡΡΠΎΠ². Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΡΠΎΠ³Π»Π°ΡΡΡΡΡΡ Ρ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡΠΌΠΈ, Π΄Π°Π½Π½ΡΠΌΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ ΡΡΠΎΡΠΎΠ½ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΠΎΠΊΠ°ΠΆΠ΅ΠΌ ΡΡΠΎ.
Π ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈΠ· Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ, ΡΠΈΠ½ΡΡ ΡΠ³Π»Π° Ξ± ΡΠ°Π²Π΅Π½ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅.
sin Ξ± = A 1 H O A 1 = y 1 = y
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΡ Π΄Π»Ρ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ°.










