Tns 2th x2 k конденсатор для чего он нужен
Tns 2th x2 k конденсатор для чего он нужен
Наша задача сделать так, чтобы помехам не «захотелось» залазить в «нежные места» наших схем, но дать току помех течь туда, куда он «хотел» течь (в нейтраль, к примеру). С другой стороны, можно не доводить сеть до плачевного состояния, не выпуская помехи за пределы устройства.
Для того, чтобы уменьшить помехи, применяют фильтры. Тип фильтра и даже его расположение зависит от конкретного случая. К примеру, если помехи создаются одним источником (двигателем, например), то лучше всего поместить фильтр поближе к этому источнику – замкнуть ток помехи (как на рисунке выше).
Если помехи создаются распределенной схемой в металлическом корпусе (компьютерный блок питания), то фильтр лучше поместить как можно ближе к сетевому шнуру – замкнуть ток помехи внутри корпуса и соединить корпус с самым “чистым” местом схемы, чтобы он сам не излучал.
На рисунке – типичная схема фильтра компьютерного блока питания. Красным показан путь излучаемой помехи, а зеленым – помехи, передающейся по проводам.
Помеха имеет две составляющих – синфазную и противофазную.
Противофазная составляющая помехи — это напряжение помехи между фазой и нейтралью. Для ее подавления используются конденсаторы типа X. Само название X происходит от английского “across-the-line”, буква X похожа на крест (“cross”). На рисунке выше, это конденсатор – C1.
К этим конденсаторам предъявляются такие требования – они должны выдерживать максимально допустимые в сети всплески, не загораться при выходе из строя и не поддерживать горение.
Сейчас используются два основных подкласса X-конденсаторов – X1 и X2.
Емкость X конденсаторов варьируется от 0.1мкФ до 1мкФ. Какую емкость нужно выбрать для данного конкретного прибора можно выяснить только с осциллографом.
Синфазная составляющая помехи — это напряжение помехи между обоими сетевыми проводами и корпусом устройства. Понять, что это такое и зачем нужно немного сложнее.
Рассмотрим типичный импульсный источник питания. Между первичной и вторичной обмоткой трансформатора T1 всегда есть паразитная емкость (нарисована зелененьким). Представим, что конденсатора C7 пока нет. Высокочастотные пульсации беспрепятственно проникают со стока транзистора (самое шумное место схемы!) на вторичную обмотку через зелененькую емкость. Таким образом, на всей выходной части блока питания присутствуют пульсации (с частотой блока питания) относительно заземления и обоих сетевых проводов. Напряжение эти пульсаций может доходить до тысяч вольт. Наш мега-чувствительный прибор будет излучать эти пульсации в эфир, а излучать помехи – это тоже самое, что ловить помехи только с обратным знаком. Прибору будет плохо.
Теперь добавим конденсатор C7. Ток помехи, который просочился через зеленый конденсатор теперь может вернуться туда, откуда взялся по более короткому и менее сложному пути, чем в предыдущем случае и в наш мега-чувствительный прибор ему больше течь не хочется!
Конденсаторы Y – типа делятся на 2 основных класса
Рекомендую также почитать документ
CAPACITORS FOR RFI SUPPRESSION OF THE AC LINE: BASIC FACTS
О помехах и не только…X- и Y-конденсаторы
Проблема электромагнитной совместимости и электромагнитных помех становится с каждым годом актуальнее. Связано это в первую очередь с увеличением числа потребителей и изменением схемотехники источников питания. Причем происходит как количественный рост (увеличение уровня помехи), так и качественный (меняется ее спектр). Помехи, как физическое явление присутствовали в электрических сетях всегда. Если раньше основным источником были коллекторные электродвигатели, с неизбежным искрообразованием на щетках, то сегодня – это импульсные источники питания с характерными для них ключевыми каскадами.
Как известно, помехи возникающие при работе устройства бывают двух видов: дифференциальные – когда ток помехи протекает в питающих проводах в разных направлениях и синфазные, когда ток помехи протекает в одну сторону, то есть дифференциальная помеха – это помеха между двумя проводами питания, а синфазная – между проводами питания и землей. Чтобы снизить влияние на электрическую сеть, между источником и потребителем устанавливается фильтр, типовая схема которого показана на рисунке слева.
Остановимся подробнее на особенностях этих конденсаторов и попытаемся разобраться в том, зачем они нужны и чем отличаются от «просто конденсаторов».
Начнем с дифференциальной помехи.
К конденсаторам данного класса предъявляются повышенные требования – они должны выдерживать максимально допустимые в сети электропитания всплески, не загораться при выходе из строя и не поддерживать горение.
Сейчас используются два основных подкласса X-конденсаторов – X1 и X2:
Основные свойства конденсаторов типа Х
Величина ёмкости X-конденсаторов варьируется от 0.1мкФ до 1мкФ. Для каждого конкретного случая она рассчитывается в зависимости от потребляемой мощности нагрузки и уровня помех в линии. Как правило, противофазная составляющая комплексной помехи — это напряжение помехи между фазой и нейтралью.
В качестве примера появления синфазной помехи рассмотрим структурную схему AC/DC преобразователя.
Все гальванически развязанные AC/DC преобразователи напряжения имеют в своём составе трансформатор. Ему присущ такой существенный недостаток, как паразитная межобмоточная ёмкость (С пар ). Так как силовой ключ преобразователя напряжения гальванически связан с входным напряжением, а частота преобразования составляет порядка нескольких десятков килогерц, то величина сопротивления паразитной ёмкости трансформатора на этой частоте мала и будет являться причиной появления синфазной помехи на выходе, на обоих проводах сразу. В некоторых случаях напряжение помехи может достичь опасных для человека величин. Ток синфазной помехи обязательно отводится в провод заземления.
Обратим внимание на то, что в данном случае конденсаторы C Y связывают один из проводов питающей сети с выходом преобразователя. Это накладывает дополнительные требования к конденсаторам по его надёжности. Конденсаторы класса Y предназначены для работы в тех местах, где выход их из строя угрожает безопасности людей.
Конденсаторы класса Y – типа делятся на 2 основных подкласса:
Основные свойства конденсаторов типа Y
На сегодняшний день в группе компаний «Промэлектроника» конденсаторы классов X и Y широко представлены продукцией таких ведущих фирм, как Epcos и Vishay, Murata.
Конденсатор в электродвигателе: что это такое и для чего он нужен
Отправим материал на почту
Асинхронные моторы активно используются в быту и на производстве. При запуске в некоторых случаях для них может не хватить крутящего момента. Чтобы решить эту проблему, используется пусковая цепь с особым образом подобранным конденсатором. Чтобы правильно его выбрать и использовать, нужно знать, зачем нужен конденсатор в электродвигателе и как правильно определить его характеристики.
Что такое пусковой конденсатор
Когда электродвигатель находится в рабочем режиме, его движение обеспечивается обмотками. Однако, когда в момент старта нужно начать вращение, обычных усилий двигателя недостаточно. Без использования дополнительных средств он только начнёт слегка подрагивать.
Обычно одним из элементов двигателя является рабочий конденсатор. Он накапливает заряд, который способен превышать рабочее напряжение, а затем отдаёт его в нужный момент. Однако для пуска его работы недостаточно. Для этого необходимо параллельно подключить ещё один конденсатор, который называют пусковым.
Его запускают на короткое время, которое не превышает нескольких секунд. Иногда это делают при помощи кратковременного нажатия пусковой кнопки, а иногда выключение производят автоматически после того, как двигатель стал набирать обороты.
Использование пускового конденсатора особенно важно в тех случаях, когда двигатель нужно запустить под нагрузкой. В этом случае потребуется увеличить стартовый момент в течение первых секунд работы.
В некоторых случаях двигатель запускают с незначительной нагрузкой. В таком случае пусковой конденсатор может не потребоваться. Это применяется для двигателей, мощность которых не превышает 1 квт. Отказ от его использования позволит упростить схему и снизить затраты. Иногда нагрузка может быть связана с особенностями конструкции. В таком случае можно принять меры для её снижения, что облегчит запуск двигателя в дальнейшем.
Что такое конденсатор
Эта деталь содержит две металлических пластины, между которыми находится слой диэлектрика. Когда к пластинам подключают напряжение, на них накапливается заряд. Электрическое находится внутри конденсатора. Оно тем сильнее, чем больший заряд находится на пластинах.
Если отсоединить напряжение от пластин, то конденсатор начинает отдавать заряд. Если используется переменный ток, то полярность напряжения будет периодически меняться. При этом на пластинах будет попеременно то положительный, то отрицательный заряд.
Ёмкость конденсатора является его важнейшей характеристикой. Она характеризует то, сколько энергии он способен пропустить через себя. Её измеряют в фарадах. Поскольку речь идёт об очень большой величине, обычно применяются приставки, которые обозначают, насколько небольшая часть используется. Чаще всего используются микрофарады (такая единицы равны 0,000001 фарады).
Для каждого конденсатора существует номинальное напряжение. При нём эта деталь способна долго и надёжно работать. Обязательно указывается предельная величина наработки, которая выражается в количестве часов.
Существуют различные типы конденсаторов:
Для использования в качестве пускового конденсатора лучше всего подходят электролитические. Их часто используют при частоте переменного тока 50 Гц и напряжении 220-600 вольт. Конденсаторы могут иметь достаточно высокую ёмкость она может составлять сотни тысяч микрофарад.
Эти детали имеют высокую уязвимость к действию перегрева. При нарушении теплового режима они быстро выходят из строя. Неполярные конденсаторы не имеют этого недостатка, однако стоят в несколько раз дороже.
При параллельном подключении ёмкости складываются. В том случае, когда её не хватает, для увеличения можно параллельно подключить дополнительную деталь. В этой ситуации нет необходимости заново собирать пусковую цепь.
Применяются также другие типы конденсаторов. Например, это могут быть вакуумные, жидкостные, газовые и другие. Однако в качестве пусковых конденсаторов их не используют.
Иногда тот конденсатор, который имеется в конструкции, не справляется с запуском. В таком случае его рекомендуется удалить, а вместо него поставить тот, который имеет большую ёмкость. Для маломощных двигателей допустимо, чтобы один конденсатор выполнял функции рабочего и пускового.
Использование полярных конденсаторов в условиях переменного напряжения возможно тогда, когда подключение выполнено через диод. Теперь полярность контактов изменяться не будет. Однако если диод будет неисправен, то деталь выйдет из строя.
Использование асинхронных двигателей
Трёхфазные и однофазные двигатели асинхронного типа активно используются в различных отраслях хозяйства. Для этого имеется несколько причин:
По внешнему виду можно легко отличить трёхфазные двигатели от однофазных. У первых всегда имеется 6 клемм, а у вторых их количество равно двум или четырём.
У трёхфазных моторов обмотки подключаются двумя способами: звездой или треугольником. Они предполагают использование напряжения, составляющего 380 вольт. Однако в быту оно применяется редко. Чтобы использовать такой мотор, нужно знать, как его правильно подключать.
Это делают с использованием фазосдвигающего конденсатора. Это позволит использовать трёхфазные двигатели при подключении к однофазной сети. В этом случае мощность мотора будет равна 50%-60% от номинальной.
Оптимальность работы трёхфазного двигателя обеспечивается при условии применения переменной ёмкости. Чтобы так сделать, на первом этапе применяют рабочий и пусковой конденсаторы, а на втором — только первый из них.
В быту часто применяются асинхронные однофазные двигатели. Для запуска обычно требуется дополнительная обмотка.
При выборе ёмкости конденсатора необходимо учитывать то, как зависит от неё величина пускового момента. При увеличении этой характеристики, происходит увеличение усилия. При определённом значении оно становится максимальным. После дальнейшего увеличения пусковой момент станет падать.
Какие характеристики учитывают при выборе
Установка конденсатора должна быть сделана строго по соответствующим правилам. Его выбор производится на основе следующей информации:
Эти данные можно получить из инструкции по эксплуатации электродвигателя. Данные электросети должны быть доступны из других источников. Для вычислений можно воспользоваться онлайн калькулятором или сделать расчёты самостоятельно.
Существуют дополнительные параметры, которые также необходимо принять во внимание:
Эти параметры не имеют решающего значения. Поэтому о них часто забывают. Однако, чем тщательнее подобран пусковой конденсатор, тем надёжнее и долговечнее будет происходить работа мотора.
Дополнительно нужно обратить внимание на размер и расположение детали. Обычно с увеличением ёмкости увеличиваются размеры детали. Иногда может быть выбор между марками различных производителей. Нужно выбирать те, которые выпускают более качественные и надёжные детали.
Как выбрать пусковой конденсатор
Чтобы он работал наиболее эффективно, нужно правильно подобрать ёмкость. Для её вычисления используются различные формулы, в зависимости от способа соединения обмоток. Вычисления выполняются следующим образом:
Если соединение обмоток выполнено треугольником, используется K = 4800, а при соединении звездой должно быть K = 2800. Результат вычислений представляет собой ёмкость, выраженную в микрофарадах.
При расчётах нужно учитывать номинальный ток. Речь идёт о максимально допустимом рабочем токе в условиях, когда работа двигателя происходит в нормальном режиме. Практически его величина зависит от имеющейся нагрузки. Если её нет, то значение будет минимальным.
Это значение называют током холостого хода. Оно фактически является компенсацией потерь, связанных с потерями энергии в обмотках, диэлектриками, трением и другими аналогичными причинами.
Если постепенно увеличивать нагрузку, то ток будет расти. Затем он достигнет номинального значения. При последующем росте ток будет расти по-прежнему, но обороты начнут падать. Длительное пребывание в этом режиме приведёт к повышенному износу оборудования и к вероятной поломке.
Определить номинальный ток можно не только из инструкции по эксплуатации, но и измерить самостоятельно. В последнем случае его величина будет определена более точно. Такое измерение можно провести следующим образом:
На основе полученного значения определяют требуемую ёмкость. Затем приобретают нужную деталь и устанавливают её. При этом допускается отклонение от расчётной величины не более, чем на 15%.
При подключении однофазного мотора ёмкость рабочего конденсатора определяют следующим образом. Нужно на каждые 100 ватт номинальной мощности взять по 7 микрофарад. Для пускового ёмкость выбирают в 2-3 раза больше. Однофазные асинхронные моторы часто используются в домашней бытовой технике.
Для этой цели обычно выбирают конденсаторы следующих конструкций:
Если необходимо обеспечить вращение двигателя в обратном направлении, то потребуется изменить подсоединение к конденсатору. Для этого будет достаточно просто поменять местами клеммы. Если речь идёт о замене уже существующей детали, то удобней всего выбрать её с теми же характеристиками, что и раньше.
В качестве рабочего необходимо использовать неполярный конденсатор, предназначенный для использования с переменным током. Это связано с тем, что в процессе работы будет постоянно меняться полярность. Однако в качестве пускового допустимо использования полярного. Для того, чтобы предотвратить изменение знака напряжения, необходимо подключить эту деталь через диод.
Проверка при установке
После того, как был выбран подходящий пусковой конденсатор, его необходимо проверить. Для этого необходимо выполнить следующие действия:
При использовании мультиметра предварительно нужно установить главный переключатель в режим измерения ёмкости.
При проведении расчётов можно использовать упрощённый вариант. Известно, что пусковой ток может превышать номинальный в 3-8 раз. Поэтому можно просто использовать ёмкость в 2-3 раза большую, чем у рабочего конденсатора. Если ёмкости для запуска недостаточно, достаточно просто взять более подходящий конденсатор.
Разница между пусковым и рабочим конденсаторами
Чтобы лучше понимать, для чего нужен пусковой конденсатор, каковы особенности их применения, нужно знать об их различиях. Основными являются следующие:
В обоих случаях чаще всего используют конденсаторы типов МБГО, МБГЧ.
Как влияет величина нагрузки на выбор конденсаторов
Если деталь выбрана в соответствии с приведёнными здесь расчётами, то она хорошо подойдёт при равномерной нагрузке. Примером такой ситуации является работа вентилятора.
Если нагрузка меняется, то в этом случае можно воспользоваться следующей хитростью. Например, можно рассматривать циркулярную пилу, с помощью которой распиливают доски и брёвна. В первом случае очевидно, что нагрузка меньше, а во втором — больше.
Например, если были произведены расчёты по номинальному току и получена ёмкость, равная 10 мкф, то нужно использовать такой рабочий конденсатор при распиливании досок. Для работы с брёвнами его скорее всего будет недостаточно. В этом случае при выполнении работы подключают две таких детали параллельно.
Если этого не сделать, двигатель потеряет мощность. В результате он станет перегреваться и для работы на нём потребуется делать перерывы, чтобы дать мотору остыть.
Наиболее распространённые в России модели
Чаще всего можно встретить в продаже следующие марки:
Существует также ряд других моделей, но они распространены в меньшей степени.
Советы по использованию
Определение необходимых характеристик и выбор модели требуют обычно значительных усилий. В связи с этим имеет смысл принять во внимание несколько советов:
Выполняя подключение пусковой цепи нужно тщательно выполнять все необходимые правила. Ошибка может привести к возникновению поломки или аварийной ситуации.
Заключение
Конденсаторное пусковое подключение полезно использовать в тех случаях, когда мотор находится под нагрузкой и для его запуска требуется значительное усилие. Пусковой конденсатор также полезен при подключении трёхфазного мотора к однофазной электросети. Его ёмкость должна быть рассчитана на основе номинального тока и напряжения сети. Если величина недостаточно, нужно поменять конденсатор тот, который имеет большую мощность.